

SWVSM'S

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar An Autonomous Institute

Abbreviations

Sr. No.	Acronym	Definition
1	ISE	In-Semester Examination
2	ISE-I	In-Semester Examination-I
3	ISE-II	In-Semester Examination-II
4	ESE	End Semester Examination
5	ISA	In-Semester Assessment (Term Work)
6	L	Lecture
7	Т	Tutorial
8	Р	Practical
9	СН	Contact Hours
10	С	Credit

Course/ Subject Categories

Sr. No.	Acronym	Definition
1	BSC	Basic Science Course
2	HSC	Humanity Science Course
3	ESC	Engineering Science Course
4	PCC	Professional Core Course
5	OEC	Open Elective Course
6	MC	Mandatory Course
7	PEC	Professional Elective Course
8	PW	Project Work (Mini and Major Project)
9	II	Industrial Internship

Course/ Subject Code

M	E	3	0	1
Branc	ch Code	Semester	Course Nu	ımber

Course Term work and POE Code

M	E	3	0	1	T/F/A	VARAM Diet
Brand	ch Code	Semester	Course	Number	T- Term work P- POE A- Audit Course	No.

Second Year B. Tech. In Mechanical Engineering

Syllabus Structure under Autonomous Status of TKIET, Warananagar 2021-22

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar Second Year B. Tech. (Mechanical Engineering)

Semester-III

(To be implemented from 2021 - 22)

Credit Scheme

Course	~		Teaching and Credit Scheme							tion Sch	eme		
Code	Category	Course Title	L	Т	P	СН	С	Component	Marks	Min f Passi			
ME201	DCC	Encinearing Mathematics III	2			,	,	ESE	60	24	40		
ME301	BSC	Engineering Mathematics - III	3			3	3	ISE	40	16	40		
ME302	DCC	Annied Thermodenessies	2			,	3	ESE	60	24	40		
WIESU2	PCC	Applied Thermodynamics	3			3	3	ISE	40	16	40		
ME303	PCC	Motorial Science and Motollyner	3			3	3	ESE	60	24	40		
MESUS	rcc	Material Science and Metallurgy	3		-	3	3	ISE	40	16	40		
ME304	ESC	Fluid Mechanics	3			3	3	ESE	60	24	40		
WIE504	ESC	Fluid Mechanics	3		-	3	3	ISE	40	16	40		
ME305	ESC			77	2			2	2	ESE	60	24	40
MESUS	ESC	Electrical Technology	4	-	-	2	2	ISE	40	16	40		
ME301T	BSC	Engineering Mathematics – III Tutorial		1		1	1	ISA	25	10	10		
ME302T	PCC	Applied Thermodynamics Lab			2	2	1	ISA	25	10	10		
ME305T	ESC	Electrical Technology Lab			2	2	1	ISA	25	10	10		
ME303P	PCC	Material Science and Metallurgy			2	2	1	ISA	25	10	10		
WIESUSI	TCC	Lab				2	1	POE	25	10	10		
ME304P	ESC	Fluid Mechanics Lab			2	2	1	ISA	25	10	10		
WIE3041	ESC	Fluid Weetlames Lab			2	2	1	POE	25	10	10		
ME306	PCC	Industrial Drawing			2	2	1	ISA	25	10	10		
ME307	ESC	Programming in C++			2	2	1	ISA	50	20	20		
ME308	PCC	Manufacturing Skill Development Lab -I			2	2	1	ISA	50	20	20		
ME309A		Audit Course - III											
			14	1	14	29	22		800157	ITUTE	c.)		

Note: In theory examination, there will be separate passing of ESE and ISE.

WARANANAGAR Dist. Kolhaput

Tatyasaheb Kore Institute of Engineering and Technology, Warananagar

Second Year B. Tech. (Mechanical Engineering)

Semester- IV

(To be implemented from 2021-22) Credit Scheme

				ПСП		ching					
C						eme		Examination &	& Evaluat	ion Sc	heme
Course Code	Category	Course Title		Т	P	СН	С	Component	Marks	Min Pass	for sing
ME401		Computational Techniques and						ESE	60	24	
WIE401	ESC	Programming	2			2	2	ISE	40	16	40
ME402	P GG	Analysis of Mechanical Elements	2					ESE	60	24	40
WIL-402	PCC	Analysis of Mechanical Exements	3			3	3	ISE	40	16	40
ME403	D CC	Electron of Combon March Street	•					ESE	60	24	40
WILLHOS	PCC	Fluid and Turbo Machinery	3			3	3	ISE	40	16	40
ME404	PCC	Theory of Mechines I	2			3	2	ESE	60	24	40
1/12/10/1	PCC	Theory of Machines –I	3		3	3	ISE	40	16	40	
ME405	PCC	Manufacturing Processes and Machine				3	3	ESE	60	24	40
	Tee	Tools	3			3	3	ISE	40	16	40
ME401T	ESC	Computational Techniques and Programming Lab	•		2	2	1	ISA	25	10	10
ME402T	PCC	Analysis of Mechanical Elements Lab			2	2	1	ISA	25	10	10
ME403T	PCC	Fluid and Turbo Machinery Lab			2	2	1	ISA	25	10	10
ME406	ESC	Programming in Python			2	2	1	ISA	50	20	20
ME404P	PCC	Theory of Machines –I Lab			2	2	1	ISA	25	10	10
	Tee	Theory of Wachines –1 Lab			2	2	1	POE	25	10	10
ME407P	PCC	Manufacturing Skill Development Lab			2	2	1	ISA	25	10	10
	100	-II						POE	50	20	20
ME408P	PCC	Computer Aided Drafting			2	2	1	ISA	25	10	10
	100				_	_		POE	25 NS	17107	10
ME409A		Audit Course – IV							8		18 <u>15.</u> 18.
			14	0	14	28	21		Section WARA	Kolhap	

Note: In theory examination, there will be separate passing of ESE and ISE.

Second Year B. Tech. (Mechanical Engineering) First Semester Detailed Syllabus

ME301- ENGINEERING MATHEMATICS - III

Lectures: 3 Hrs/WeekEvaluation SchemeCredit: 3ISE : 40 MarksTutorials: 1 Hr/WeekESE : 60 Marks

Course Objectives: The objective of the course is to

- 1. Deliver the basics of Differential equation, Laplace transforms, Fourier series, and Statistics
- 2. Provide the knowledge to identify and solve different problems of Mechanical engineering

Course Outcomes:

		DI
COs	At the end of successful completion of the course, the student will beable to	Blooms Taxonomy
CO1	Solve Linear Differential Equation of higher order	Knowledge Understand
CO2	Identify and solve Partial differential equations	Understand
CO3	Compute Laplace transform and apply them to solve Ordinary differential equations	Apply
CO4	Expand functions in terms of sine and cosine	Understand
CO5	Calculate divergence, curl, gradient and directional derivative of a vector and scalar point function	Apply Evaluate
CO6	Use Binomial, Poisson and Normal distributions to calculate probabilities	Apply

Description:

Engineering Mathematics-III course is offered as the basic science course. This course contains Mathematical methods and techniques that are used to solve complex Mechanical engineering problems. This course has six units namely i) Linear Differential equation, ii) Partial Differential Equations iii) Vector Differentiation, iv) Laplace Transformation, v) Fourier Series and vi) Correlation, Regression and curve fitting.

D	•4	1:	Trigonometric identities and Logarithmic identities	
Prerequi	sites:	2:	Differentiation and integration formulae	
		3:	Partial Differentiation.	
			Section – I	
	Line	ar I	Differential Equations	GTITUT
Unit 1	Line	ar	Differential Equation with constant coefficients-Definit	ion
Omt 1			mentary and particular integrals (without method of variation	7 Hrs
	para	mete	er), Homogeneous linear differential equations.	WARAMANAUR
	Part	ial l	Differential Equations	里 Dist. Kolliap
Unit 2	Intro	duc	tion; formation of partial differential equations; Linear equation	s of 6 Hrs
	first	orde	er, Non-linear equations of first order (four Standard forms).	A CATTAGE

	Laplace Transformation	
Unit 3	Definition and Laplace transforms of elementary functions, properties of Laplace transforms, Transforms of derivatives and integrals, Multiplication by tn, division by t, Evaluation of integrals by Laplace transforms, Inverse Laplace transform using method of partial fraction and convolution theorem (without proof), Solution of Ordinary differential equation by transform method.	7 Hrs
	Section – II	
	Fourier Series	
Unit 4	Introduction of Dirchlet's conditions, Euler's formulae. Fourier Series of functions of period 2L, even and odd functions, half range sine and cosine series.	7 Hrs
	Vector Differentiation	
Unit 5	Differentiation of vectors, Velocity and acceleration, Gradient of scalar point function and Directional derivative, Divergence of vector point function, Curl of a vector point function, Solenoidal and Irrotational vector fields	6 Hrs
	Probability Distributions	
Unit 6	Random variable, Mathematical Expectation, Standard Deviation, Binomial, Poisson and Normal distributions.	7 Hrs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	fapplicab	le
													PSO1	PSO2	PSO3
CO1	2	1											-	1	
CO2	2	2											1	-	
CO3	2	1											1	1	
CO4	2	1											1	1	
CO5	2	1													
CO6	2	1	1												

References:

Tex	at Books	
1	Higher Engineering Mathematics, Dr. B. S. Grewal, S. Chand and Company, 40th Edition.	117
2	Advanced Engineering Mathematics, H. K. Das, S. Chand Publication, 8th Edition.	STE ON
Ref	erence Books	ACAR S
1	Higher Engineering Mathematics, B. V. Ramana, Tata Mc Graw Hill, New Delhi	hapur)
2	A Text Book of Applied Mathematics, Vol. I and II, P. N.Wartikar and J. N. Wartikar, Vidyarthi Griha Prakashan, Pune.	

A textbook of Engineering Mathematics, N. P. Bali, Iyengar, Laxmi Publications (P) Ltd, New Delhi

Advanced Engineering Mathematics, Erwin Kreyszig, Wiley India Pvt. Ltd

Web Links/ Video Lectures

- Lectures 1. https://nptel.ac.in/courses/111/107/111107098/
 - 2. https://nptel.ac.in/courses/111/101/111101153/
 - 3. https://nptel.ac.in/courses/111/105/111105123/
 - 4. https://nptel.ac.in/courses/111/106/111106111/
 - 5. https://nptel.ac.in/courses/111/105/111105122/

ME302 - APPLIED THERMODYNAMICS

Lectures: 3 hrs/weekEvaluation Scheme:Credits: 3ESE: 60 MarksTutorials:ISE: 40 Marks

Course Objectives: The objective of the course is to

- 1. Provide knowledge of basic concept of energy, energy transfer and different laws of thermodynamics.
- 2. Study of applications of first and second laws of thermodynamics on various thermodynamic devices like steam generator, condenser, nozzle and turbine.
- 3. Make understand about construction and working of different types of steam turbines and performance analysis of these devices using velocity diagrams.

Course O	Outcomes:	
COs	At the end of successful completion of the course, the student will beable to	Blooms Taxonomy
CO1	Define and state thermodynamics concepts, fundamental laws, basic principles	Knowledge
CO2	Summarize the construction and working of steam power plant, steam boilers, steam condensers ,steam nozzles, steam turbines	Understand
CO3	Apply theory of thermodynamics to calculate different performance parameters for steam boiler, steam condenser, steam nozzle and steam turbine	Apply
CO4	Compare the device such as steam condensers, steam nozzles, steam turbines used in steam power plant for better performance.	Analyze
CO5	Estimate the design parameters calculations of Steam nozzles and steam turbine for given operating conditions	Evaluate
CO6	Plot the velocity diagrams for impulse and reaction steam turbines	Create

Description:

Thermodynamics is a course that explores the concepts of heat and how it can be converted to Work/ power or vice versa, covers all the aspects of energy and energy transfer. Power generation and Refrigeration are two focal aspects of applied thermodynamics which are outcomes of second law of thermodynamics.

This Course covers only power generation aspect of thermodynamics specifically steams power. Hence it is essential for Mechanical engineering students to understand thermodynamics principles fundamentals things that are useful to the engineering applications. The student will learn thermodynamics basic concepts, definitions, laws, thermodynamics cycle, work, heat and energy; enthalpy and entropy, state equation etc. By applying these concepts for the main component steam power plant (Boiler, Steam nozzles, Steam turbines, steam condensers), students are able to understand and analyze the performance of it.

1: Basic Mechanical Engineering

Hollin

Prerequisites:	2:	Applied Physics
	3:	Basic Engineering Mathematics

	Section - I						
	Review of Laws of Thermodynamics:						
Unit 1	Zeroth law, first law and Second law of thermodynamics, Statement of third law of thermodynamics. Corollaries of Second Law, Equivalence of Second law Simple Numerical treatment second law of Thermodynamics (Heat engine, Refrigerator and Heat Pump), Entropy, Clausius theorem, Clausius inequality, Entropy as a property of system, Entropy change in a reversible and irreversible processes, Increase of entropy principle, Calculation of entropy changes of gases, (numerical treatment should be based on single Thermodynamic process),						
	Properties of Pure Substances and Vapour Power Cycles	_					
Unit 2	Properties of steam, Use of steam table and Mollier chart, Temperature Entropy Diagram Carnot cycle using steam, Limitations of Carnot cycle Rankine cycle, Representation on P-v, Ts and h-s planes, Thermal efficiency, Specific steam consumption. Work ratio, Effect of steam supply pressure and temperature, Condenser pressure on the performance. (Numerical Treatment)	06Hrs					
	Steam Condensers						
Unit 3	Steam Condenser, Functions, Elements of condensing plant, Types of steam condensers, surface and jet condensers, Comparison, Vacuum efficiency, Condenser efficiency, Sources of air leakages, Methods of leak detection Estimation of cooling water required (Numerical Treatment on Steam Condensers)	06Hrs					
	Section - II						
	Steam Nozzles						
Unit 4	Functions, Shapes, Critical pressure ratio, Maximum discharge condition, Effect of faction, Design of throat and exit areas, Nozzle efficiency, Velocity coefficient, Coefficient of discharge, Supersaturated flow, Degree of under-cooling and degree of super saturation, Effects of super saturation(Numerical Treatment on nozzle without friction)	06Hrs					
	Impulse Turbines						
Unit 5	Principles of operation, Classification, Impulse and reaction steam turbine, compounding of steam turbines. Flow through impulse turbine blades, Velocity diagrams, Work done, Efficiencies, End thrust, Blade friction, condition curve and reheat factors.(Numerical Treatment on Single stage impulse turbine)	07Hrs					
	Reaction Turbines						
Unit 6	Comparison between impulse and reaction, Flow through impulse reaction blades, turbine Velocity diagram, and degree of reaction, Parson's reaction turbine, Governing of steam turbines. Losses in steam turbines, Performance of steam turbines. Function of diaphragm, Glands, Turbine troubles like Erosion, Corrosion, Vibration, Fouling etc. (Numerical Treatment on Single stage impulse reaction turbine)	WARAN Dist. K					

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		ole
													PSO1	PSO2	PSO3
CO1	3	-												3	
CO2	3	1												3	
CO3	2	3	2	1									1	2	
CO4	2	3	2	1	1	1			1	1	1	1	1	2	
CO5	2	3	2	1									1	2	
CO6	2	1	2	2									1	1	

References:

Tex	Text Books						
1	"Thermal Engineering", Kumar and Vasandani, D. S. Publisher Metropolitan Book Co, Delhi, 3rd Edition.						
2.	"Thermal Engineering", Ballaney P.L, Khanna Publishers, New Delhi, 27th Edition.						
3.	"Engineering Thermodynamics", P.K. Nag., Tata McGraw Hill, New Delhi, 4th Edition.						
4.	"Thermal Engineering", R. K. Rajput, Laxmi Publications, 3rd Edition.						
5.	"Steam and Gas Turbines", R. Yadav, CPH Allahabad, 2nd Edition, 2005.						
Ref	Ference Books						
1	"Fundamentals of Thermodynamics", Claus Borgnakke, Sonntag R. E., John Wiley and						
2	"Thermodynamics: an Engineering Approach", Cengel and Boles, Tata McGraw-Hill, New Delhi, 3rdEdition,.						

Video Lectures

Lectures 1 to 40. https://nptel.ac.in/courses/112/105/112105123/

ME303 - MATERIAL SCIENCE AND METALLURGY

Lectures: 3 hrs / week **Evaluation Scheme:**

Credits: 3 ESE: 60 marks
ISE: 40 Marks

Course Objectives: The objective of the course is to

- 1) Provide students an understanding of basic structure, crystal arrangement of materials and the phase diagrams
- 2) Study the different methods of heat treatment processes and advantages of heat treatment for different steel components
- 3) Introduce the fundamental theory of powder metallurgy processes

Course Outcomes:					
Cos	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy			
CO1	State and Describe various crystal structures and phases of metals and alloys	Knowledge			
CO2	Explain and plot equilibrium diagrams of ferrous and non ferrous metals	Understand			
CO3	Discuss the various stages of techniques used in manufacturing of Powder Metallurgy components	Understand			
CO4	Compare the heat treatment processes used in mechanical components	Apply			
CO5	Explain various destructive and nondestructive testing techniques	Knowledge Apply			
CO6	Select the appropriate material and heat treatment process for the given mechanical components	Analyze			

Description:

Life of the Mechanical Components is greatly influenced by the material properties and heat treatment provided for it. Hence Material selection is the important task in manufacturing process. To select the appropriate material, One should know about required properties for specified task. This course deals with different engineering material and their properties. It also includes knowledge of heat treatment to change the properties as per the requirement.

Prerequisites:	1:	Basic Mechanical Engineering	
r rerequisites:	2:	Engineering Physics	
	3:	Engineering Chemistry	1
			-(

	Section - I	
	Introduction to Metals and alloy systems	
Unit 1	Introduction to Metallic and Non-metallic materials and its classification (metals/alloys, polymers and composites) a) Imperfections in crystals , Defects-Point, Line, Planar, Volume- Slip planes and slip systems b) Alloy formation by crystallization, Nucleation and growth, Cooling curves, Dendritic structure and coring. c) Solid solutions and intermediate phases d) Phases and Gibbs phase rule e) Construction of equilibrium diagrams from cooling curves, Isomorphous system(Solid Solution), Eutectic, Partial solubility Peritectic and Intermetallic Compounds Lever arm principles, Long and short-range freezing	07Hrs
	Study of Phase Diagrams	
Unit 2	(With respect to typical compositions, Properties and Applications for the following alloys.) a)Fe- Fe3C equilibrium diagram - Ferrous alloys (Plain carbon steels, cast iron) Alloy steels- Free cutting steels, HSLA high carbon low alloy steels, maraging steels. creep resisting steels, Stainless steels- different types. Tool steels- types, Selection of materials and Specifications based on -IS, BS, SAE, AISI, Copper based alloys brasses Cu- Zn, Bronzes Cu- Sn, , Cu- Be, Cu-Ni. Aluminum based alloys Al- Cu(Duralumin) - Al-Si (Modification), Pb- Sn (Solders and fusible alloys)	11 Hrs
	Principles of Mechanical Testing:	
Unit 3	Destructive Testing methods: Tensile, Compressive, Impact, Fatigue, Creep, Hardness (Rockwell, Brinell and Vickers) Non- Destructive Testing: Dye Penetrant, Magnetic, Ultrasonic, Radiography, Eddy Current testing.	04 Hrs
	Section - II	
	Principles of Heat Treatment & heat treatment of Ferrous Alloys	
Unit 4	Transformation of Pearlite into austenite upon heating, Transformation of austenite into Pearlite, Bainite and Martensite on cooling. TTT –Diagram and CCT - Diagrams - significance, Effect of alloying elements on TTT diagram and its significance. Heat treatment furnaces and equipments, controlled atmosphere	06 Hrs
	Heat Treatment Processes:	18/
Unit 5	a) Heat Treatment of Steels Annealing – Types-Full, Partial and Sub critical annealing (Various types) and purposes Normalising- Purposes	WARAN Dist. US Hrs

	Mechanism of quenching and Quenching media, Hardenability- Concept and methods of determination of hardenability- Grossmans critical diameter method and Jominy end quench test. Tempering Types, Structural transformations during tempering, purposes sub zero treatment Surface hardening - Flame and Induction Chemical heat treatments for case hardening - Carburising, Nitriding, Cyniding, Carbonitriding Annealing- Stress relief, Recrystallization and Process annealing Precipitation hardening - Basic requirements, Stages, Common alloys, Variables, theories Heat treatment defects and remedies	
	Powder Metallurgy:	
Unit 6	Advantages, Limitations and Applications of Powder Metallurgy Powder manufacturing types- Mechanical, Physical, Chemical and Electro-Chemical Mixing/ Blending. Compaction- types- Conventional, Isostatic, HERF, Powder rolling and extrussion Sintering- Types liquid stage and solid stage sintering Finishing operations: Sizing, Machining, Infiltration and Impregnation Flowcharts for – Self-lubricating bearings.	04 Hrs

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		ole
													PSO1	PSO2	PSO3
CO1	3						1							-	
CO2	2	2	2				1								
CO3	2			2											3
CO4	2	2	3	1											2
CO5	2	2	1												1
CO6	1		3	2											3

References:

Tex	t Books		
1	S.H. Avner, "Introduction to physical metallurgy", Mcgraw Hill Book Company Inc, 2nd, 1974.	Edition,	c Ox
2	Vijendrasingh, "Physical metallurgy", Standard Publishers Delhi	WARANANAG!	AR COMMISSION
3	W. D Callister, "Material science and engineering", Wiley India Pvt. Ltd., 5th Edition	A. C.	

4	. V.D. Kodgire, "Material science and metallurgy for engineers", Everest Publishers Pune,12th Edition
5	T.V. Rajan / C.P. Sharma, "Heat Treatments Principles and Practices", Prentice Hall of India Pvt Ltd, New Delhi
6	V Raghwan, "Material Science and Engineering", Prentice Hall of India Pvt. Ltd., New Delhi ,3rd Edition, 1995.
Ref	erence Books
1	V. Raghvan, "Materials Science & Engineering", PHI 5th Edition, Prentice-Hall of India (P) Ltd.
2	W. Callister, "Materials Science & Engineering", John Wiley & sons
3	R.A. Higgins, "Engineering Metallurgy", Viva Books Pvt. Ltd., New Delhi, 1 st Edition

Video Lectures: ----

ME304 - FLUID MECHANICS

Lectures: 3 hrs / week **Evaluation Scheme:**

Credits: 3 ESE: 60 Marks ISE: 40 marks

Course Objectives: The objective of this course is to

- 1) Introduce fundamental aspects of fluid properties, fluid flow behavior and develop energy balance equation for fluid flow systems.
- 2) Apply the fundamental equations on fluid flow such as Continuity equation, Bernoulli's equation and Momentum equation to analyze its characteristics
- 3) Understand the fluid flow in pipe and determine the different head losses in pipe.
- 4) Study the concept of boundary layer developed in fluid flow over the surface

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	State and define the different properties of the fluid and fluid flow	Knowledge
CO2	Describe the principles of continuity, momentum and energy as applied to fluid motions.	Understand
CO3	Derive and apply the governing equations of Fluid Dynamics	Apply
CO4	Determine different head losses in flow through pipe and apply this on practical problems associated with fluid systems.	Apply Analyze
CO5	Understand the boundary layer theory of fluid flow as well as estimate the lift and drag coefficient of the fluid flow.	Understand Apply
CO6	Derive and analyze the mathematical expressions related to fluid statics, kinematics, dynamics, pipe flow systems and boundary layer theory	Analyze

Description:

Fluid Mechanics is offered as the engineering science course. This course contains basic principles and applications in Mechanical Engineering. In this course students will learn about fundamentals, properties, principles and governing equations of fluid behavior in statics and in motion. Students will get new problem solving approaches like control volume concept, streamline patterns and fluid flow analysis. This course has six units namely i) Fluid Statics ii) Fluid Kinematics iii) Fluid Dynamics iv) Momentum Equation and Laminar Flow v) Flow through pipes vi) Boundary Layer Theory

1				9	100
	1:	Engineering Mathematics	18	5/	1 177
Prerequisites:			13	Lucasia	MAGAR \ 😤
1 refequisites.	2:	Applied Mechanics	60	Mykenise	hantif D
			四	Dist. No	Mapar 18
	3:	Engineering Physics	13	3.5	
			1	ALMI	383
	4:	Basic Mechanical Engineering		Manager Comments	and the second
					J

	Section - I					
	Fluid Properties and Fluid Statics: A) Fluid Properties: Definition of fluid, Properties of fluid Mass Density, Weigh Specific Volume, Specific Gravity, Dynamic Viscosity, Kinematic Viscosity Tension, Capillarity and Compressibility, Types of fluid.	y, Surface				
Unit 1	Unit 1 B) Fluid Statics: Statement of Pascal's law, Hydrostatic law of pressure Definition of Total Pressure, Centre of Pressure, Buoyancy, Meta-center Condition of Equilibrium of floating and submerged bodies (No Numerica Treatment on fluid Statics).					
Unit 2	Jnit 2 Fluid Kinematics: Eulerian and Langragian approach of fluid flow, Flow visu Types of flow, Streamlines, Pathlines, streaklines, Stream tube, Continuity Eq Cartesian coordinates in three dimensional flows. Velocity and Acceleration of fluid particles, Stream function and velocity					
	potential function.	6 Hrs.				
	Fluid Dynamics: Euler's Equation of motion, Integration of Euler's equation a equation. Kinetic Energy correction factor, Applications of Bernoulli's Venturimeter, orifice meter					
Unit 3	Definition of Notch, Classification and it Applications, Derivation of Flow over triangular and rectangular notches only Definition of Orifice, classification and it Applications, Hydraulic Coefficients Cd, Cc and Cv and Cr	7 Hrs.				
	Section - II					
	Momentum Equation and Laminar Flow:					
Unit 4	A) Momentum Equation: Derivation of momentum equation, Applications of mequation, momentum correction factor, Analysis of fluid flow through pipe bends. B) Lawringer Flower Lawringer flow through singular pipes and derivation of Hannel.	omentum				
	B) Laminar Flow: Laminar flow through circular pipes and derivation of Hagen Poiseuille's equation. Laminar flow through parallel plates, Introduction of CFD and its applications.					
TI:4 5	Fluid Flow through Pipes: Different energy losses in flow through pipe, Loss friction: Darcy's Weisbach equation and Chezy's equation, Minor Losses due to contraction, pipe fittings, at entrance, at exit, due to obstruction etc.					
Unit 5	Flow through Series pipe, Parallel pipe, Siphon pipes, Branching pipes and equivalent pipes	7 Hrs.				
Unit 6	Boundary Layer Theory and Forces on Immersed Body: A) Boundary Layer Boundary layer thickness, its characteristics, laminar and turbulent bound Displacement thickness, Momentum thickness, Energy thickness, separation, bou control.	ary layers,				
	B) Forces on Immersed Bodies: Lift and Drag, Drag on a flat plate and on aerofoil, Types of drags, Development of lift. (Magnus effect) stalling condition of aerofoil.	6 Hrs.				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	1	-	-	-	-	-	-	1	-
CO2	3	3	2	1	-	-	2	-	-	-	-	-	-	2	-
CO3	3	2	2	1	-	-	2	-	-	-	-	-	-	3	-
CO4	2	2	3	1	-	-	2	1	1	-	1	-	-	3	-
CO5	2	2	2	1	-	-	2	ı	1	-	1	-	-	3	-
CO6	1	3	2	1	-	-	1	1	1	-	-	-	-	2	-

References:

Tex	t Books
1	Fluid Mechanics, R.K.Bansal, Laxmi publications. New Delhi, 1998.
2	Fluid mechanics and Hydraulic Machinery, R.K. Rajput, Laxmi publishers
3	Introduction to Fluid Mechanics and Fluid Machines, S.K.Som, Gautam Biswas, Suman Chakraborty, Tata McGraw- Hill Publication. 3 rd Edition 2012.
4	Hydraulics and Fluid Mechanics including Hydraulic Machines, Dr. P. N. Modi and Dr. S. M. Seth, Standard Book House.
Ref	erence Books
1	Fluid Mechanics –Fundamentals and Application, Y. A. Cengel, J. M. Cimbala, TMI,
2	Fluid Mechanics, K.L.Kumar, S. Chand Publication. New Delhi, 2 nd Edition, 2000.
3	Fluid Mechanics, V.L. Streeter and E.B. Wylie, Tata McGraw Hill Pvt Ltd., New Delhi, 2 nd Edition 1997.

Video Lectures

Lectures 1. https://nptel.ac.in/courses/112/105/112105269/

- 2. https://nptel.ac.in/courses/112/104/112104118/
- 3. https://nptel.ac.in/courses/112/105/112105218/
- 4. https://www.youtube.com/watch?v=fa0zHI6nLUo

ME305 - ELECTRICAL TECHNOLOGY

Lectures: 2 hrs / week **Evaluation Scheme:**

Credits: 2 ESE: 60 Marks
ISE: 40 Marks

Course Objectives: The objectives of the course is to

- 1) To Provide the Basic knowledge of Electrical concepts and Motors used in mechanical applications
- 2) To select suitable drives for different mechanical systems by considering its speed Torque characteristics.
- 3) To study the various concept of electrical heating and Welding.

Course (Outcomes:							
Cos	At the end of successful completion of the course, the student will be able to							
CO1	Define and Deals the basic principles of Electromagnetic Induction.	Knowledge						
CO2	Describe the construction, working and characteristics of various Electric motors.	Understand						
CO3	Describe and Identify the suitable Electric heating and welding methods for different Mechanical Applications.	Knowledge Understand						
CO4	Apply Various speed control techniques for DC and AC motors in various mechanical systems.	Apply Analysis						
CO5	Analyze and select suitable types of motors for different mechanical systems by considering different speed torque characteristics.	Apply Analysis						
CO6	Determine the Efficiency of 3 Phase Induction motor by using various input and output parameters.	Evaluate						

Description:

Number of Mechanical systems requires Prime movers to get the required mechanical motion. Electrical motors are widely used for this purpose. Hence It is essential to study the concept of AC and DC motor under Mechanical Engineering Stream. Electrical Heating and welding is also integral part of Mechanical Industry, Therefore Every Mechanical Engineer should aware about this. Electrical Technology course is offered as the Fundamental science to achieve above these aspects This course contains study of various Electric motors construction, working, characteristics, speed control Techniques and applications. This course has six units namely i) DC Motor, ii) Three Phase Induction motor, iii) Fractional Horse power Motor, iv) Electric Drives, v) Electric Heating and vi). Electric Welding

Prerequisites:	1:	Basic Electrical Engineering	JEB /		Dist. Kol	haput	SERVICE OF THE PERSON NAMED IN COLUMN TO PER
	2:	Few basic electrical components identification	1	3		08.5	

	Section -I						
	DC motors						
Unit 1	Unit 1 Construction, Working, Types, Back EMF, Speed equation, Torque equation, Speed torque characteristics, and Power losses in DC. Motors. Speed control of DC Shunt and series motor.						
	Three Phase Induction Motor						
Unit 2	Construction, Types, Working, Speed equation, Torque equation, Torque speed						
	characteristics, Power stages in motor, Advantages of 3- Phase Induction motor.	05 Hrs					
	(Numerical treatment on power stages)						
	Fractional Horse Power Motors						
Unit 3	Construction, Working, characteristics and Applications of Single phase						
Unit 3	permanent capacitor type Induction motor, AC servo motor, DC servo motor,	05 Hrs					
	Stepper motor (VR type and PM type).						
	Section – II						
	Electrical Drives						
Unit 4	Advantages of electrical drives, Types - Individual & Group drive, Criteria for						
Cint 4	selection of motors for applications like lathe, Traction, pumps, Conveyors, Lift,	05 Hrs					
	etc.						
	Electric Heating						
Unit 5	Construction and Working of - Direct & Indirect resistance Heating, Direct arc						
Omt 3	furnace, Indirect arc furnace, Horizontal Core type induction furnace,(Numerical	05 Hrs					
	treatment on Electrical to Heat energy conversion)						
	Electric Welding						
Unit 6	Principle, Advantages and types of Resistance Welding. Formation and	04 Hrs					
	Characteristics of Electric Arc Effect of Arc Length.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	f applicable		
													PSO1	PSO2	PSO3	
CO1	2															
CO2	3	2		1												
CO3	3	1	1		2										TITUE	
CO4	3	2		1	2									OF ING		
CO5		2		1	2								/	WAR.	ana Naga	
CO6		2		1	2								\	H Dis	. Keihap	

References:

Tex	kt Books						
1	A Text book of Electrical Technology, Vol-II ,B. L. Theraja, S. Chand publication, 1st Edition.						
2	Principles of Electrical Machines by V.K.Mhta,& Rohit Mehta. S. Chand Publishing, 2008						
Ref	Reference Books						
1	A Text book of "Electrical Power system "by S. L. Uppal, DBS Publications						
2	Utilization of Electric Power, R. K. Rajput, Laxmi publication (p) Ltd., 4th Edition, 2007.						
3	Electrical Technology, by U. A. Bakshi , Technical Publication Pune,4th Edition , 2009.						

Web Links/ Video Lectures

Lectures <u>https://nptel.ac.in/courses/108/108/108108076/#</u>

https://nptel.ac.in/noc/courses/noc19/SEM2/noc19-ee65/

https://nptel.ac.in/courses/112/107/112107090/

ME301T- ENGINEERING MATHEMATICS – III TUTORIAL

Tutorial : 1 Hr/Week Evaluation Scheme
Credit : 1 ISA : 25 Marks

POE : NA

Course Objectives: The objective of the course is to

- 1. Solve Differential equation,
- 2. Find Laplace transforms and apply to solve differential equations
- 3. Expand given function as Fourier series expansion
- 4. Calculate standard deviation, variance and probabilities

Course Outcomes:

COs	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy
CO1	Identify and solve differential Equation	Knowledge Understand
CO2	Compute Laplace transforms and apply to solve differential equations	Apply
CO3	Express functions in terms of sine and cosine	Understand
CO4	Calculate the probabilities using distribution functions	Apply

Description:

Engineering Mathematics-III tutorial is dedicated to solve more problems in each unit. In this section, more problems will be practiced so that students can use mathematical methods and techniques to solve complex mechanical engineering problems.

Prerequisites:		Trigonometric identities and Logarithmic identities
i rerequisites.	2:	Differentiation and integration formulae
	3:	Partial Differentiation.

Tutorials

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Linear differential equation-I	1 Hr	Understand
2	Linear differential equation-II	1 Hr	Knowledge
3	Partial differential equation (Linear)	1 Hr	Knowledge
4	Non-linear partial differential equation	1 Hr	Krow edge Mann Dist. Kolh
5	Laplace Transformation	1 Hr	Understand
6	Inverse Laplace transformation and applications	1 Hr	Apply

7	Fourier series expansion of functions	1 Hr	Understand
8	Velocity and acceleration, gradient and directional derivative	1 Hr	Knowledge
9	Divergence and curl of vector point function	1 Hr	Knowledge
10	Probability distribution	1 Hr	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable				
													PSO1	PSO2	PSO3		
CO1	2	1															
CO2	2	2															
CO3	2	1				-	-										
CO4	2	1	1			-	-										

References:

Tex	Text Books						
1	Higher Engineering Mathematics, Dr. B. S. Grewal, S. Chand and Company, 40th Edition.						
2	Advanced Engineering Mathematics, H. K. Das, S. Chand Publication, 8th Edition.						
Ref	Reference Books						
1	Higher Engineering Mathematics, B. V. Ramana, Tata Mc Graw Hill, New Delhi						
2	A Text Book of Applied Mathematics, Vol. I and II, P. N. Wartikar and J. N. Wartikar, Vidyarthi						
2	Griha Prakashan, Pune.						

ME302T - APPLIED THERMODYNAMICS LAB

Practicals: 2 hrs/ week **Examination Scheme**

Credits: 1

ISA: 25 Marks
POE: NA

Course Objectives: The objective of the course is to

- 1. Learn about various energy conversion devices such as steam boilers, steam condensers, cooling towers.
- 2. Identify and make different types of steam boilers, condensers and cooling towers
- 3. Recommend particular steam boiler, steam condensers as per the specified applications

Course Outcomes:						
Cos	At the end of successful completion of the course, the student will beable to	Blooms Taxonomy				
CO1	Understand classification, construction, working of different types of steam boilers, steam condensers and cooling towers used in steam power plants	Knowledge				
CO2	Recognize the different safety devices(mountings)and accessories are used in steam boiler	Understand				
CO3	Identify the particular type of steam boiler for specific application	Apply				
CO4	Know the functions of different boiler mountings and accessories in operation of boiler	Understand				
CO5	Estimate and determine heat balance sheet of steam boiler	Evaluate Create				

Description:

The Applied thermodynamics laboratory consists of a number of models of steam boiler, steam condenser, steam turbines, and various boiler accessories. Students are able to enhance their basic and fundamental knowledge of applied thermodynamics by effective using of these demo models.

	1:	Basic Mechanical Engineering	
Prerequisites:	2:	Applied Physics	
	3:	Basic Engineering Mathematics	(A)
			

Practicals:

Sr. No.	Practical Topic	Hrs.	Bloom's Taxonomy
	Study and Demonstration of water tube and fire		Understand
1	tube boilers.	2	Apply
2	Study and Demonstration of boiler mountings.	2	Understand
3	Study and Demonstration of boiler accessories.	2	Understand
4	Study and demonstration of steam condensers	2	Understand
5	Study of cooling towers used in steam power plants	2	Knowledge
			Understand
6	Heat balance sheet of steam boiler	2	Analysis
			Evaluate

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	3	1		-										3	
CO2	3	1		-										3	
CO3	3	1	1	1	1	1	1		1	1		1		3	
CO4	3	1												3	
CO5	3	2	1	1										1	

References:

Text 1	Text Books							
1	"Thermal Engineering", Kumar and Vasandani, D. S. Publisher Metropolitan Book Co, Delhi, 3rd Edition.							
2.	"Thermal Engineering", Ballaney P.L, Khanna Publishers, New Delhi, 27th Edition.							
3.	"Engineering Thermodynamics", P. K. Nag., Tata McGraw Hill, New Delhi, 4th Edition.							
4.	"Thermal Engineering", R. K. Rajput, Laxmi Publications, 3rd Edition.							
5.	"Steam and Gas Turbines", R. Yadav, CPH Allahabad, 2nd Edition, 2005.							
6.	"Principles of Engineering Thermodynamics", Moran, Shapiro, Boetnner, Wiley, 8th Edition.							
Refer	Reference Books							
1	"Fundamentals of Thermodynamics", Claus Borgnakke, Sonntag R. E., John Wiley and							

2	"Thermodynamics: an Engineering Approach", Cengel and Boles, Tata McGraw-Hill, New Delhi ,3rd Edition,.

Video Lectures / Practicals

Practicals 1 to 6. <u>https://nptel.ac.in/courses/112/107/112107216/</u>

ME305T - ELECTRICAL TECHNOLOGY LAB

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks

POE: NA

Course Objectives: The objective of the course is to

1) Provide the Basic knowledge of Electrical connections for different Electrical Setups.

2) Analyze speed control techniques and estimate efficiency at different load conditions for DC and AC Motor

3) Perform calculations to estimate the suitable motor for given application

Course	Course Outcomes:						
COs	At the end of successful completion of the course, the student will be	Blooms					
	able to	Taxonomy					
CO1	Deals how to make Electrical wiring connection for a different Setups as per the circuit diagram	Knowledge					
CO2	Define and describe the construction and working details of Various starters for both AC and DC Motor	Knowledge Understand					
CO3	Apply Various speed control techniques for DC and AC to analyze its Speed Torque characteristics	Apply Analyze					
CO4	Select the suitable Motor for different Mechanical applications with required speed, Torque and power calculations.	Evaluate					

Practicals:

Minimum Ten (10) experiments should be performed.

Sr. No	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Speed control of DC shunt motor by flux control method.	2	Analysis
2	Speed control of DC shunt motor by armature voltage control.	2	Knowledge Analyze
3	Reversal of rotation of DC motor.	2	Knowledge Analyze
4	Load test on DC shunt motor.	2	Analyze
5	Study of DC motor starters.	2	Knowledge Understand
6	Study of Electric Braking for DC Motor	2	Understand
7	Load test on 3 phase induction motor.	2/8	Analyze
8	Reversal of rotation of 3 phase induction motor	2 8	WARKnowledge Analyze
9	Study of 3 phase induction motor starter	2	Understand

10	Load test on Single phase Induction motor	2	Knowledge
			Analyze
11	Study of Selection Criteria of Motor	2	Analyze
12	Study Motor selection for Electric Vehicle	2	Knowledge Analyze

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicabl	le
													PSO1	PSO2	PSO3
CO1	2														
CO2	2														
CO3		2	1	1	1										
CO4		2	2	1	1		1					1			

References:

Text Books

A Text book of Electrical Technology", Vol-II ,B. L. Theraja, S. Chand publication, 1st Edition.

Principles of Electrical Machines by V. K. Mhta, & Rohit Mehta. S. Chand Publishing, 2008

Links of V-Labs provided for Experiments

https://ems-iitr.vlabs.ac.in/List%20of%20experiments.html

http://vem-iitg.vlabs.ac.in/

ME303P - MATERIAL SCIENCE AND METALLURGY LAB

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks
POE: 25 Marks

Course Objectives: The objective of the course is to

1) To familiarize the students with the use equipments to determine mechanical properties of materials to acquire the knowledge in Destructive Material Testing.

2) To familiarize the students with various heat treatment processes.

Course Outcomes:

	At the and of greenessful completion of the course the student will be	Dlaama
COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Determine different properties like strength, elongation, toughness, hardness by doing tests like Tensile test, Impact test, Hardness test.	Knowledge, Apply
CO2	Choose different NDT techniques for determining surface and sub surface cracks	Analyze
CO3	Explain various heat treatment processes and their micro structural changes	Analyze
CO4	Explain the concept of hardenability and estimate the hardnability	Understand Analyze

Practicals:

Sr. No.	Practical/ Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Tensile testing of M.S.	2	Apply
2	Hardness testing (Rockwell and Brinell)	2	Knowledge Apply
3	Impact testing (Izod and Charpy) of M.S.	2	Apply
4	Non Destructive testing-Dye penetrant and magnetic particle testing.	2	Knowledge, Analyze
5	Macroscopic Examinations -Spark Test.	2	Knowledge
6	Preparation of specimen for microstructure analysis	2	Analyze
7	Study of microstructure of steels and Cast Irons.	2	Analyze
8	Study of microstructure of Non-ferrous alloys (Brass, Duralimin, Babbit)	2	WA Evaluate Dist. Kolliapur
9	Heat treatment of steels (Annealing, Normalizing, Hardening on medium / high carbon steel).	2	Analyze

10	Jominy end quench test for hardenability.	2	Knowledge,
10		2	Apply
11	Industrial visit should be conducted to observe	2	Understand
	industrial heat treatment practices.	_	Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	f applical	ble
													PSO1	PSO2	PSO3
CO1	2	1											2		
CO2	2	1											2		
CO3		2				1			1		-	1	1		
CO4		2				1			1		-	1	1		

References:

Tex	t Books
1	S.H. Avner, "Introduction to physical metallurgy", Mcgraw Hill Book Company Inc, Edition, 2nd, 1974.
2	Vijendrasingh, "Physical metallurgy", Standard Publishers Delhi
3	V.D. Kodgire, "Material science and metallurgy for engineers", Everest Publishers Pune,12th Edition
Ref	erence Books
1	V. Raghvan, "Materials Science & Engineering", PHI 5th Edition, Prentice-Hall of India (P) Ltd
2	W. Callister, "Materials Science & Engineering", John Wiley & sons
3	R.A. Higgins, "Engineering Metallurgy", Viva Books Pvt. Ltd., New Delhi, 1st Edition

ME304P - FLUID MECHANICS LAB

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks
POE: 25 Marks

Course Outcomes: At the end of successful completion of the course, the student will **Blooms COs** beable to Taxonomy Knowledge CO₁ Identify and use different pressure measuring device used fluid system Understand Understand different types of fluid flow and determine laminar or turbulent Understand CO2 fluid flow Apply Calibrate the different discharge measuring devices to determine coefficient CO3 of discharge Analyze CO4 Determine the major and minor losses n pipe system Apply

Practicals:

List of Assignments and Experiments:

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Blooms Taxonomy
1	Assignment on Study and demonstration of Pressure Measuring Devices (Compulsory)	2	Knowledge
2	Theoretical Assignment on Dimensional analysis which may include procedure and Numerical on Rayleigh's method and Buckingham π theorem. (Compulsory)	2	Knowledge Understand
3	Flow visualization by plotting of streamlines (Heleshaw's apparatus).	2	Knowledge
4	Reynold's experiment.	2	Apply Analyze
5	Verification of Bernoulli's equation.	2	Analyze
6	Calibration of Venturimeter	2	Analyze
7	Calibration of notches	2	Analyze
8	Calibration of orifice under steady and unsteady flow condition.	Pate IN	Application Analyze
9	Determination of minor losses in pips-fittings.	WAR WAR	ANANAnalyze
10	Determination of coefficient of friction in pipes of different materials.	THE DIE	Analyze

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	1	-	-	-	-	-	-	-	-	-	-	1	1	1	-
CO2	2	1	2	2	-	-	-	-	-	-	-	-	-	2	-
CO3	2	2	2	2	-	-	-	-	-	-	-	-	-	2	-
CO4	2	1	2	2	1	1	1	1	1	1	1	1	1	2	-

References:

Text	Books
1	Fluid Mechanics, R. K. Bansal, Laxmi publications. New Delhi, 1998.
2	Fluid mechanics and Hydraulic Machinery, R.K. Rajput, Laxmi publishers
3	Experiments in Fluid Mechanics, Sarbjit Singh, PHI Learning, New Delhi
4	Hydraulics and Fluid Mechanics including Hydraulic Machines, Dr. P. N. Modi and Dr. S. M. Seth, Standard Book House.

Links of V-Labs

Practical

- 1. https://fm-nitk.vlabs.ac.in/#
- 2. https://eerc03-iiith.vlabs.ac.in/List%20of%20experiments.html
- $\textbf{3.} \, \underline{http://vlabs.iitb.ac.in/vlabs-dev/labs/mit_bootcamp/fluid_mechanics/experimentlist.html}\\$

ME306 - INDUSTRIAL DRAWING

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 25 Marks
POE: NA

Course Objectives: The objective of the course is to

- 1. To study and identify BIS conventions used in machine drawing.
- 2. To understand the line and curve of intersection in interpenetrations of solids.
- 3. To study and identify function of Standard machine components.
- 4. To study limits fits and geometrical tolerances on components.
- 5. To study and drawing of assembly to details and details to assembly drawings.

Course Outcomes:

Cos	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Draw BIS conventions and Standard machine components	Knowledge, Application
CO2	Analyze and interpret production Drawing	Analysis
CO3	Understand the use of limit fits and tolerances on production drawing.	Knowledge, Application
CO4	Develop the skills for drawing assembly from details and details from assembly drawing.	Knowledge, Analysis

Description:

This course has six units namely i) Introduction to CAD, ii) Use of layers, iii) Geometric Dimensioning and Tolerancing, iv) Detail and Assembly Drawings, v) Production Drawing, vi) Introduction of 3D.

	1.	For demonstrate of Francisco Constitute
Prerequisites:	1:	Fundamentals of Engineering Graphics

	Study of B.I.S. (Bureau of Indian Standards) Conventions	
Unit 1	Importance of BIS Conventions, Drawings sheet sizes, BIS Conventional representation of engineering materials, BIS conventions for sectioning, Types of 04 H	rs
Omt 1	threads profiles, Internal and external threads, Types of springs, Types of gears BIS Conventional representation of Splined shaft, Serrated shaft, Knurling, Bearings, BIS Conventional representation of welds.	TUTE
	Sketching of Machine Component	ANAGA
Unit 2	Importance of sketching, proportionate dimensioning on following sketches Sketches of nut, Bolts square and Hexagonal Flanged nuts, Lock nuts, Dome nut, Capstan nut, Wing nut, Castle nut, Split pin, Square headed bolt, Cup headed bolt, Types of foundation bolts, Stud, Washer, Set screws, Cap screws.	Shap!

	Various types of rivets and riveted joints, Various types of keys, Socket and spigot (Cotter joint), Knuckle (pin) joint, Muff coupling, Protected and unprotected Flanged, Coupling, Universal coupling, solid and bush bearing. Plummer block (pedestal bearing), Foot step bearing. Flat and V-belt pulleys, Fast and loose pulleys, speed cone pulleys, Pipe joint for C.I. Flanged, socket and spigot type pipe						
	joint Interpenetration of Solids						
Unit 3	Introduction to Interpenetration of Solids, interpenetration of Prism with Prism, Prism with cylinder, Prism with cone, prism with pyramid, Cylinder with Cylinder, Cone with Cylinder.	04 Hrs					
	Limits, Fits and Tolerances						
Unit 4	Significance of limits and fits and tolerances, Definitions, Types, Recommendations and selections in relation with limits fits and tolerance system, Tolerances of form and position, surface finish symbols as per BIS conventions, Selection and entering of all these symbols with reference to details and assembly drawings, Tolerancing an individual dimensions of details drawing.						
	Auxiliary Projection						
Unit 5	Importance of Auxiliary Projection, Projection on auxiliary vertical and horizontal plane, Auxiliary projection of simple machine components.	04 Hrs					
	Industrial Drawing (Production Drawing)						
Unit 6	Importance of Details and Assembly Drawing. To prepare detail drawings from given assembly drawing. To prepare assembly drawing from given details drawing. Preparation of detail and assembly drawing from the following examples such as Machine tool parts: Tool post, Tailstock, Machine vice, Chucks etc. Engine parts: Stuffing box, Crosshead assembly, Piston and connecting rod, etc. Miscellaneous parts: Valve assembly, Screw jack, Jigs and fixtures, Pipe vice etc.	04 Hrs					

Practicals:

Number	Practical/ Experiment/Tutorial Topic	Hrs	Cognitive levels of attainment asper Bloom's
1	Sheet on BIS conventions.	4	Knowledge
2	Sheet on Free hand sketches of Machine Component	4	Knowledge, Application
3	Sheet on Interpenetration of Solids	4	Knowledge, Application
4	Sheet on Limits, Fits and Tolerances.	4	Knowledge, Application (17)
5	Sheet on Auxiliary Projection	4	Knowledge, Application
6	Sheet on Details and Assembly Drawing	4	Knowledge Kolla

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	1		2		2					2			2		
CO2		3													
CO3			I	ı	3						1				
CO4			-									1			

References:

Tex	Text Books							
1	N. D. Bhatt, Machine Drawing. Charotor Publication House, Bombay, 42th Edition, 2007							
2	P.S. Gill, Machine Drawing. S. K. Kataria and Sons, Delhi, 7 th Edition, 2008							
3	"Production Drawing", Narayana, Kannaiah and Venkata Reddy, New Age International. 2nd Edition, 2002.							
Ref	Reference Books							
1	IS: SP46-Engineering Drawing Practice for Schools and Colleges, B.I.S. Publications.							
2	IS: 696-Code of Practice for General Engineering Drawings B.I.S. Publications.							
3	IS: 2709-Guide for Selection of Fits, B.I.S. Publications.							
4	IS: 919-Recommendation for Limits and Fits for Engineering, B.I.S. Publications							

ME307 - PROGRAMMING IN C++

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 50 Marks
POE: NA

Course Objectives : The objectives of the course is to

- 1. To understand how C++ improves C with object-oriented features.
- 2. To introduce an object oriented programming language.
- 3. After the students have successfully completed the course, they shall have sufficient knowledge of the basic computer operations and various programming techniques
- 4. To develop and enhance the programming skills amongst the students in general as well as application of it in the field of Mechanical Engineering.

Course Outcomes: At the end of successful completion of the course, the student will be **Blooms COs** able to **Taxonomy** Knowledge, Develop logic for solving problems using object oriented language Understand, CO₁ Plot algorithms and flowcharts for programs involving decision control Understand CO₂ statements, loop control statements and case Control structures. Create Compile and debug programs in C++ language CO₃ Application Apply their knowledge and programming skills to solve various Apply CO4 computing problems in the field of Mechanical Engineering. Create

Description/ Applications:

Today's era is computer era. All sectors of engineering are modified with the aid of computer. Therefore it is essential to know the very fundamental computer language i.e. C++. It has tremendous applications. Real-World Applications Of C++ are Games, GUI Based Applications, Database Software, Operating systems, Various Browsers, Advanced Computation And Graphics, Banking Applications. Through this course, C++ will be introduced to mechanical students.

Duovoquigitage		Fundamentals of computer programming.
Prerequisites:	2.	Fundamentals of c programming and Object oriented programming.

	Evolution of Programming Methodologies						
Unit 1	Introduction to OOP and its basic features, Basic components of a C++, Program and program structure, Compiling and Executing C++ Program. Selection control statements in C++.						
	Data Types, Expression and Control Statements Iteration						
Unit 2	statements in C++, Introduction to Arrays, Multidimensional Arrays, Strings and String related Library Functions	04Hrs					
	Functions						
Unit 3	Passing Data to Functions, Scope and Visibility of variables in Functions	04Hrs					
	Creating Classes and Abstraction						
Unit 4	Classes objects, data members, member functions, this Pointer, Friends, Friend Functions, Friend Classes, Friend Scope, and Static Functions. Structures in C++. Constructors and Destructors, Static variables and Functions in class.	06Hrs					
	Operator Overloading						
Unit 5	Overloading Unary Operators, Overloading binary operators.	02 Hrs					
	Inheritance in C++						
Unit 6	Types of Inheritance, Pointers, Objects and Pointers, Multiple Inheritances. Virtual Functions, Polymorphism, Abstract classes.						

Practicals:

Sr. No.	Practical/Experiment/Tutorial Topic	Hrs	Blooms Taxonomy
1	One assignment based on Object-Oriented programming: Introduction, Basic concepts, Benefits,	4	Understand
2	Minimum 2 program on Data types, Expression and control statements Iteration statements in C++	4	Understand
3	Minimum 2 program on Functions, Passing Data	6	Apply Synthesis
4	Minimum 2 program on Creating classes and Abstraction: Classes objects, static Functions.	2	Apply, Evaluate Create
5	Minimum 2 program on Operator Overloading in C++,	4 KON NA	Understand Apply

6	.Minimum 2 program on Inheritance in C++	4	
			Understand

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	I	f applica	ible
													PSO1	PSO2	PSO3
CO1	2	3	1	2	2	-	-	-	-	-	-	-	-	1	-
CO2	2	3	1	2	2	-	-	-	-	1	-	-	-	1	-
CO3	2	2	2	2	3	-	-	-	-	1	1	1	2	2	2
CO4	2	3	1	2	-	-	-	-	-	-	-	-	2	2	2

References:

Text Books								
1	Object Oriented Programming, E. Balguruswami, Tata McGraw Hill Publication.							
2	Let us C++, YashwantKanitkar, BPB Publication, New Delhi							
3	C++ Programming, AlstevanswielyIndia,7th Edition.							
4	Object oriented Programming with C++, SouravSahay, Oxford University Press.							
5	Object-Oriented Programming in C++, Rajesh K Shukla, Wiley India							
Refere	Reference Books							
1	The C++ Programming Language, Brian W. Kernighan, Dennis M. Ritchie, Prentice Hall							
2	C++: The Complete Reference, Schildt H., Tata Mcgraw Hill.							

Link of VLAB

http://vlabs.iitb.ac.in/vlabs-dev/labs/oops/labs/index.php

ME308 - MANUFACTURING SKILL DEVELOPMENT LAB-I

Practicals: 2 hrs / week **Examination Scheme:**

Credits: 1 ISA: 50 Marks
POE: NA

Course Objectives: The objective of the course is

1. To study Patterns, Core boxes, Preparation of Pattern for solid casting.

2. To conduct Sand testing, Size analysis, Moisture percentage, Permeability Test.

3. Impart Knowledge of welding Processes and classification.

Course Outcomes:

COs	At the end of successful completion of the course, the student will	Bloom's						
COS	be able to:	Taxonomy						
CO1	To describe importance of casting processes in manufacturing.	Understand						
CO2	To design and develop the pattern.	Apply						
CO2	To design and develop the pattern.	Create						
CO3	To demonstrate the various sand tests.	Apply						
CO4	To create mechanical component using welding technology	Create						

Description:

Most of mechanical manufacturing industries are dealing with casting processes and welding processes. Student should have hands on experience related to this technology to make them skilled with industrial environment. To emphasis this objective, manufacturing skill development lab-I is introduced to the mechanical engineering course which contains basic knowledge of casting process, sand testing and welding process.

Prerequisites: 1: Basic Mechanical Engineering

Sr. No	Practical/Experiment/Tutorial Topic	Hrs.	Bloom's Taxonomy
1	Study of Patterns-Types, Materials used, Pattern Allowances, Construction and color code and preparation of pattern for solid casting.	8hrs	Knowledge Apply
2	Study of Core boxes: Types, Allowances	2hrs	Knowledge
	Sand testing for green sand and core sand (Any four)	8hrs	Knowledge Apply
	Preparation of standard specimen		STITUTE
3	Preparation of greensand mould		St. It.
	Size analysis. Grain fineness Number		2/ CANANAGA!
	Moisture percentage		Wakana Kolhapu
	Permeability Test		I Dist. III

	Green Compressive strength		
	Clay content		
	Mould hardness		
4	Preparation of one job by using welding process like Tungsten Inert Gas(TIG)/Metal Inert Gas(MIG)	4hrs	Apply Create
5	Foundry visit to study pattern shops and making moulding	2hrs	Knowledge Apply

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	2				2										1
CO2	2					1									2
CO3	2	2				1		1	1		1	-	1	1	2
CO4	2				3	1								-	

References:

Text	Text Books						
1	Manufacturing Technology - Foundry, Forming and Welding, Vol. I, P. N. Rao, Tata Mc Graw-Hill, New Delhi, 3 rd edition, 2009.						
2	A Text book of Production Technology (Manufacturing Processes) ,P. C. Sharma,S. Chandand Company Pvt. Ltd, New Delhi. 7 th Edition, 2010.						
6	Production technology, R. K. Jain, Khanna Publishers, Delhi,15th Edition, 2000.						
Refer	Reference Books						
1	Principles of metal casting, Haine and Rosenthal, TataMcGraw-Hill Book, Company. New Delhi.						
2	Workshop Technology, W. A. J. Chapman , CBS Publishing and Distributors, New Delhi Vol.I						

ME309A - AUDIT COURSE-III [ENVIRONMENTAL STUDIES]

Practicals: 2 hrs / week

Credits: Non-Credit

ISE : 50

Audit Point : 2

Course Objectives: The objective of the course is

The syllabus of Environmental Studies provides an integrated, quantitative and interdisciplinary approach to the study of environmental systems. The students of Engineering undergoing this course would develop a better understanding of human relationships, perceptions and policies towards the environment and focus on design and technology for improving environmental quality. Their exposure to subjects like understanding of earth processes, evaluating alternative energy systems, pollution control and mitigation, natural resource management and the effects of global climate change, shall help the students to bring a systems approach to the analysis of environmental problems.

Course Outcomes:							
COs	At the end of successful completion of the course, the student will be able to:	Bloom's Taxonomy					
CO1	Relate the interdependency of environmental components.	Understand / Apply					
CO2	Identify the environmental problems and prevent environmental pollution	Apply					
CO3	Interpret impacts of waste on environmental components.	Analysis					
CO4	Analyze environmental change and its social impacts	Analysis					

Description:

The Study of Environment is playing important and crucial role for sustainable development of society, particularly to address industrial pollution, living standards and claimant change issues. This course covers essential theory of environment processes and infrastructure for the supply of water, the disposal of waste, and the control of pollution of all kinds.

Prerequisites:	1:	Understanding of Environment Education course.
----------------	----	--

Sr. No	Practical/Experiment/Tutorial Topic	Hrs.
1	Ecology: Ecosystem, Ecological Pyramids, Food chain, food web, Ecological succession, Natural Resources and Associated Problems. Forest resources, Water resources, Mineral resources, Food resources, Energy resources, Land resources Role of individuals in conservation of natural resources.	4 Hrs WARANANAGAN Dist. Koihapu

	Pollution	10 Hrs
	Water pollution: causes, effects, control, drinking water quality	
	standards, Arsenic, lead, cadmium, chromium, fluoride contamination &	
	its effects, water treatment, wastewater treatment. Air pollution: Causes, effects, control, Air pollution controlling	
	equipments, Air quality standards, National air quality index, vehicular	
2	emission, alternative fuels, indoor air pollution, Thermal inversions,	
2	Photochemical Smog and Acid Precipitation	
	Noise pollution: Causes, effects, control, noise standards recommended by CPCB,	
	Environmental Protection Act , Air (Prevention and Control of	
	Pollution) Act. Water (Prevention and control of Pollution) Act. Wildlife	
	Protection Act. Forest Conservation Act and International and	
	National efforts for Environmental Protection. Waste management:	4 Hrs
	Solid waste management, biomedical waste management, E waste,	4 1118
3	plastic waste management, Hazardous waste management, carbon	
	footprint, Recycling of waste, Role of Central Pollution Control Board	
	(CPCB),State Pollution Control Board, Role of NGO's	
	Social Issues and Environment:	6 Hrs
	Global Warming, Ozone layer depletion, urban problems related to energy, Alternative energy sources, Evolution of Sustainable	
4	development: timeline, Evolution of green movements in India, Disaster	
	management: Flood, Earthquakes, Cyclones, Landslides, Draught,	
	Tsunami etc., Swachh Bharat Mission, Role of Information technology	
	in Environment and human health.	
	Project Work: Visit to Local Polluted site – Urban/Rural/Industrial/Agricultural	
	Or	
	Study of simple Ecosystems –Ponds, River, Hill slopes	
5	Or	
	Preparation of small models or device to resolve the environment problem/issue	
	Project work shall be based on programme	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable			
						200							PSO1	PSO2	PSO3	
COI	1							-	1						-	
CO2		2							2					-		
CO3									2							
CO4		-		-	-	1			3							

References:

Tex	t Books							
1	Agarwal K.C. ,2001 "Environmental Biology", Nidi publication ltd., Bikaner							
2	D.K.Asthana, Meera Asthana, A Textbook of Environmental Studies, S. Chand Publication Revised edition, 2006.							
3	S. Deswal & A. Deswal, Basic course in environmental Studies, Dhanpat Rai & Co ltd., Delhi, Second revised edition, 2009.							
Refe	Reference Books							
1	Eldon D Enger, Bradley F. Smith, Environmental science – a study of inter- relationships Wm C Brown Publishers 1989							
2	Francois Ramade Ecology of Natural resources, John wiley & Sons, 2009							
3	Robert Leo Smith, Ecology and field biology, Harper Collins Publishers, 1998							
4	Gilbert M. Masters, Introduction to Environmental Engineering & Science, Prentice Hall International Inc. Second Edition							

APPROVED BY

Member Secretary Board of Studies

Chairman Board of Studies Chairman Board of Studies

WECHANICAL ENGG. DEPT. 'yasaheb Kore institute of Engg. Technology (Autonomous)

Academic Dean T.K.I.E.T., Warananagar

Principal

T.K.I.E.T., Warananagar

Chairman

RE IV. Academic Council

Tatyasaheb Kora Institute of Engg
& Technology (Autonomous)

Warahanagar, Dist. Kolhapur

Seal of Institute EFRING

Second Year B. Tech. (Mechanical Engineering) Second Semester Detailed Syllabus

ME401-COMPUTATIONAL TECHNIQUES AND PROGRAMMING

Lectures: 2 hrs. /weekEvaluation Scheme:Credits: 2ESE : 60 MarksTutorials: NAISE : 40 Marks

Course Objective: The objective of the course is to

- 1. Provide the knowledge of Numerical methods used and solve various types of problems in Mechanical Engineering
- 2. Identify specific method to solve a specific engineering problem
- 3. Enable students to write computer program in C++/ Python for aforementioned numerical methods.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Bloom's Taxonomy
CO1	Differentiate between direct methods and numerical methods with their significance	Knowledge
CO2	State different numerical methods used to solve engineering problems	Knowledge
CO3	Describe mathematical process of above methods to solve problems	Comprehension
CO4	Relate a specific method to solve an engineering specific problem with greater emphasis on mechanical Engineering.	Analysis
CO5	Develop the logic behind a method for its coding through flowcharts.	Synthesis
CO6	Prepare computer program for these numerical methods using C++/ Python	Synthesis/ Create

Description:

The course, Computational Techniques and Programming is offered as the Engineering Science course. There are some situations in engineering, where the direct methods fail or do not provide correct solution to mathematical problems. These situations may be critical and need some solutions. Engineer should have knowledge of Numerical methods to cope up with the situations. This course contains Numerical Methods to solve various Engineering Problems which has six units namely,

i) Roots of Equations ii) Linear Algebraic Equations iii) Curve Fitting & Interpolation iv) Numerical Differentiation & Integration v) Ordinary Differential Equations and vi) Ordinary Differential Equations 7.1

Dramaguigitage	1:	Basics in Algebra: Roots of equations, Simultaneous equations.	1	8	1		7	\&\ \%\
Prerequisites:	2:	Basics of Matrices and determinants	10	40	M.	iranana iist. Koih	aput Buqut	
	3:	Basic knowledge of derivative and integration	1	7	2.7		- N. W.	

	4. Basic Knowledge of C++ Programming / Python								
	Section-I								
	Roots of Equations								
Unit 1	Bracketing Methods: Bisection method & Regula falsi method Open Methods: Muller method, Newton Raphson method for single root & for Non-linear equations. A C++/Python Program on Regula falsi method								
	Linear Algebraic Equations								
Unit 2	Unit 2 Direct Methods: Gauss elimination method, LU Decomposition method Iterative Methods: Gauss-Siedel method. A C++/Python Program on Gauss elimination method								
	Curve Fitting & Interpolation								
Unit 3	Curve Fitting: Straight line fit, Parabolic fit Interpolation: Newton's Divided difference method A C++/Python Program on Straight Line fit	04 Hrs							
	Section-II								
	Numerical Differentiation & Integration								
Unit 4	Num. Differentiation: Newton's Forward, Backward and Central Difference method, Newton's Divided difference method for unequal intervals Num. Integration: Trapezoidal method, Simpson's methods, Gauss quadrature methods A C++/Python Program on Simpson's 3/8 th rule	07 Hrs							
	Ordinary Differential Equations								
Unit 5	Taylor's series method, Modified Euler's method, Finite Difference method A C++/Python Program on Modified Euler's method	04 Hrs							
	Partial Differential Equations								
Unit 6	Liebmann's method for Laplace equation, Crank-Nicholson method (Descriptive treatment only)	03 Hrs							

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicabl	le
													PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	1	2	-	-	-	-	-	-	-	-	-	CINS?	TITUTE
CO4	2	3	1	2	-	-	-	-	1	-	-	-	2	5/2/2/2×	2 NANAGAI
CO5	2	3	1	2	2	-	-	-	1	-	-	-	- 02		Koihapu
CO6	2	2	2	2	3	-	-	-	-	-	1	-	2	3521	2

References:

Tex	Text books							
1	Dr. P. Kandasamy, Dr. K. Thilagavathy, Dr. K. Gunavathi, Numerical Methods, S. Chand Publications							
2	S. Arumugam, A. Thangapandi Isaac, A. Somasundaram, Numerical Methods, Scitech Publications							
3	E. Balagurusamy, Numerical Methods, McGraw Hill Education							
Ref	Reference Books							
1	Steven Chapra, Applied Numerical Methods with MATLAB for Engineers &Scientists, McGraw Hill Publication							
2	S. R. Otto, J. P. Denier, An introduction to Programming & Numerical Methods in MATLAB.							
3	Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press							

Link for Video Lectures:

https://nptel.ac.in/courses/111/107/111107105/

https://nptel.ac.in/courses/106/106/106106212/

Link of VLAB for Experiments:

http://vlabs.iitb.ac.in/vlabs-dev/labs/numerical_lab/labs/explist.php

ME402- ANALYSIS OF MECHANICAL ELEMENTS

Lectures: 3 hrs. /weekEvaluation Scheme:Credits: 3ESE : 60 MarksTutorials: NAISE : 40 Marks

Course Objectives : The objective of the course is

- 1. To develop understanding of the basic concepts related to tensile, compressive and shear stresses in engineering components and basic knowledge of principal stresses and strains.
- 2. To discuss the basic principles of torsion in shafts, shear force and bending moment in beams, deflection in beams, buckling in mechanical elements.
- 3. To enable the students to calculate distribution of bending stresses and shear stresses in mechanical components of various cross sections.

Course Outcomes:

Cours		
Cos	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Define different types of stresses and strains induced in any machine component due to various loading conditions.	Remember
CO2	Interpret the nature of internal stresses that will develop within the mechanical components for different types of loading.	Understand
CO3	Utilize mathematics and basic engineering principle to evaluate stress, strain, torque, buckling load, slope and deflection.	Apply
COA	Examine the effect of different loading conditions in various machine elements such as simple machine components, beams, shafts, columns.	Analyze
	Determine the mechanical design parameters of structural member under different loadings.	Evaluate
CO6	Apply and Construct graphical solutions for given loading conditions of structure.	Apply Create

Description:

Analysis of Mechanical Elements is a fundamental subject needed primarily for the students of Mechanical sciences. The course provides an introductory study on stresses and strains on deformable solids. It focuses on the analysis of members subjected to axial, bending, and torsional loads. The course discusses in detail, the shear force and bending moments on beams. It introduces the concept of principal stresses in the analysis of structural members. In a nutshell, the course aims at developing the skill to solve design problems on Analysis of Mechanical Elements which is basic need of mechanical engineering.

	1:	Knowledge of Basic Mechanical Engineering	384
Prerequisites:	2:	Knowledge of applied mechanics	(1) N

	Section - I					
	Stresses and Strains					
Unit 1	Concept of Stress and Strain, (Linear, Lateral, Shear and Volumetric), Hooke's Law, Poisson's ratio, Stress-strain diagram for ductile and brittle material, Factor of safety, Elastic constants and Inter-relationship between elastic constants, Stresses, stains and deformation in composite bars, Complementary shear stresses, Thermal Stresses.					
	Torsion					
T I 110	Introduction to Torsion, Basic assumptions, Torsion equation, Stresses in hollow and solid circular shafts, power transmitted by shaft.					
Unit 2	Shear Force and Bending Moment Diagram	09 Hrs				
	Concept and definition of shear force and bending moment in determinate beams (Simply supported, cantilever and overhanging) due to concentrated load, UDL, UVL and Couple.					
	Bending Stresses in Beams					
Unit 3	Symmetric pure bending of beams, Derivation of flexure formula, moment of resistance of cross-sections, Design of rectangular, circular(solid and hollow) sections, I and T sections					
	Shear Stresses in Beams					
	Distribution of shear stresses in beams of various commonly used sections such as rectangular, circular, I and T.(Only numerical)					
	Section - II					
	Principal Stresses and Strains					
Unit 4	Normal and shear stresses on any oblique planes, Concept of Principal planes, Derivation of expression for Principal stresses and maximum shear stress, Positions of principal planes and planes of maximum shear, Graphical solutions using Mohr's circle of stresses.	08 Hrs				
	Slope and Deflection of Beams					
Unit 5	Slope and deflection of beam using double integration method and area moment method for simply supported beam and cantilever beam due to concentrated load and UDL.	06 Hrs				
	Columns					
Unit 6	Euler's formula for different end connections, Concept of equivalent length, limitations of Euler's formula, Rankine formula.	05 Hrs				

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10				applicab	ole
	roi	FO2	103	FU4	FO3	PO0	ro/	108	FU9	FO10	POH	FO12	PSO1	PSO2	PSO3
CO1	3	2		1	1								1		
CO2	2	3											1		
CO3	3	2		2	1								1		
CO4	1	3	2	2									2		
CO5	1	2	1	3									1		
CO6	1	1	2	1			2						1		

COs vary with course code

References:

Tex	Text Books						
1	"Strength of Materials", S. Ramamruthum, DhanpatRai and Sons, New Delhi.						
2	"Strength of Materials", R. K. Bansal, Laxmi Publication, 4th Edition.						
3	"Strength of Materials", Khurmi Gupta, S. Chand Publication.						
4	"Strength of Materials", R.K. Rajput, S. Chad Publication.						
5	"Mechanics of structure", S.BJunnerkar, Charotar Publication House.						
6	"Strength of Materials", S. S. Bhavikatti, Vikas Publication House.						
Ref	erence Books						
1	"Strength of Materials", Beer and Johnson, CBS Publication.						
2	"Strength of Materials", G.H. Rider, Mac Millan India Ltd.						
3	"Strength of Materials", Nag and Chanda, Willey India Publication.						
4	"Advanced Mechanics of Materials", Boresi, Willey India Publication.						
5	"Strength of Materials", Den Hartong, McGraw Hill Publication.						

Web Links/ Video Lectures:

- 1. https://nptel.ac.in/courses/112/107/112107146/
- 2.https://nptel.ac.in/courses/112/106/112106141/

ME403-FLUID AND TURBO MACHINERY

Lectures: 3 hrs. /weekEvaluation Scheme:Credits: 3ESE: 60 MarksTutorials: NAISE: 40 Marks

Course Objectives: The objective of the course is to

- 1. Make students understand the construction, working principles, model testing & performance characteristics of hydraulic devices such as water turbines ¢rifugal pump.
- 2. Discuss theory of various types of compressors, its applications and performance evaluation.
- 3. Impart the information and explain the construction and working of gas turbine using thermodynamic cycle.

Course Outcomes:

Cos	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Define and state the applications of pump, compressor, water turbine and gas turbine.	Knowledge
CO2	Explain working principle and classifications of turbo machines.	Understand
CO3	Apply the Euler's theory to estimate the work done by plotting velocity triangles for various turbo machines.	Apply
CO4	Analyze the performance parameters such as work done, power and efficiency of turbo machines.	Analyze
CO5	Compare various turbo machines and recommend suitable device for required application.	Evaluate
CO6	Design turbo machines for specified conditions	Create

Description:

The course deals with rotodynamic machines like water turbines, centrifugal pump, reciprocating compressor, centrifugal compressor and gas turbine etc. The knowledge of these rotodynamic machines is necessary for students to understand the working and design of power generation plants. It covers the different aspects such as fundamental theory, construction, working, design and efficiency calculations etc of these machines.

	1:	Basic Mechanical Engineering	
Prerequisites:	2:	Basic knowledge of fluid mechanics	C.WSTITUT
	3:	Thermodynamic laws & processes	2 Juananan AG

	Section - I	
Unit 1	Impulse Water Turbines	
Unit 2	Euler's equation for work done in rotodynamic machine, definition of hydraulic turbine, classification of water turbines, Impulse turbine: Pelton wheel turbine - construction and working of pelton wheel turbine , application of impulse water turbine, velocity triangles, calculations of work done, different efficiencies, power, discharge etc , specific speed, pelton wheel design Governing of pelton wheel. Reaction Water Turbines	06 Hrs
Unit 2	Reaction turbine: Construction and working of francis and kaplan	
	turbine, application of reaction water turbine, comparison between impulse and reaction water turbine, velocity triangles, degree of reaction, calculation of work done, various efficiencies, power, discharge, specific speed etc. Introduction of draft tube, cavitation in reaction turbine, governing of reaction turbine.	07 Hrs
Unit 3	Centrifugal Pump	
	Centrifugal pump: classification of pumps, principle, construction and working of centrifugal pump, applications, different heads& efficiencies, velocity triangles, calculations of work done, power, efficiencies, specific speed etc. Minimum starting speed, multistaging of centrifugal pump, priming of pump, NPSH(Net Positive Suction Head), cavitation of centrifugal pump.	07 Hrs
	Section - II	
Unit 4	Reciprocating Air Compressor	
	Compressor, applications of air compressors, classification of compressors, air compressor terminology, construction and working, calculation of work done, power and different efficiencies in polytropic, isothermal & isentropic compression for single stage reciprocating air compressor. Effect of clearance volume and expression for volumetric efficiency, Introduction of multistage compressor.	07 Hrs
Unit 5	Rotary Air Compressor	
	Construction and working of centrifugal compressor, velocity triangle, calculations of work done, power and efficiency etc. Difference between centrifugal and axial flow compressor, difference between reciprocating and rotary compressor. Introduction of roots blower, vane blower and axial flow compressor.	07 Hrs
Unit 6	Gas turbines	
	Classification of gas turbine, applications, Standard Brayton's cycle, actual Brayton's cycle, calculation of work done, power & thermal efficiency etc. Construction and working of gas turbine with reheating, regeneration and inter cooling,	NANAGAR Romsput

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicab		le	
													PSO1	PSO2	PSO3	
CO1	3	2					2							1		
CO2	3	1					2							1		
CO3	1	2	3											2		
CO4	1	3	3	1	1		1	1	1				1	3		
CO5	2	2	2		1	1	1	1	1		-		-	2		
CO6	1	1	2	3	1		1	1	1		-		2	2	-	

References:

Te	Text Books							
1	A text book of Fluid Mechanics and Hydraulic Machines by R.K.Bansal, Laxmi Publicaton							
2	A text book of Thermal Engineering by R. S. Khurmi, S Chands Publicatuon							
3	Hydraulics and Fluid Mechanics including Hydraulic Machine by Dr. P. N. Modi and Dr. S. M. Seth, Standard Book House.							
4	Fluid mechanics and Hydraulic Machinery by R.K. Rajput, LaxmiPublicaton							
Re	ference Books							
1	Turbo machines by S. M. Yahya							
2	Steam and Gas Turbines by R. Yadav							
3	Turbines, compressors, fans by S.M.Yahya							
4	Thermodynamics – An Engineering Approach by Cengel& Boles							

Web Links/ Video Lectures:-

- 1. https://nptel.ac.in/courses/112/104/112104305/
- 2. https://nptel.ac.in/courses/112/106/112106303/
- 3. https://nptel.ac.in/courses/112/106/112106061/
- 4. https://nptel.ac.in/courses/101/101/101101058/
- 5. https://nptel.ac.in/courses/112/106/112106200/

ME404- THEORY OF MACHINE - I

Lectures: 3 hrs. /weekEvaluation Scheme:Credits: 3ESE: 60 MarksTutorials: NAISE: 40 Marks

Course Objectives: The objective of the course is to

- 1. Provide the students with basic knowledge of mechanism and its application in mechanical engineering including power transmitting devices.
- 2. Explain types of Cam with followers and select according to their applications.
- 3. Introduce working principle and construction of governors as well as comparing different types of governing mechanisms.
- 4. Study the fundamental theory of friction and its analysis in different Mechanisms and machines

Course Ou	Course Outcomes:							
Cos	At the end of successful completion of the course, the student will be able to	Blooms Taxonomy						
CO1	List different types of mechanisms and their applications in mechanical engineering	Knowledge						
CO2	Describe and apply kinematic theories of mechanism to plot velocity and acceleration diagrams	Understand Apply						
CO3	Apply knowledge of cam to draw the Cam Profile with follower for different applications	Apply						
CO4	Compare power transmitting elements used in different machines and select the appropriate as per requirement	Analysis						
CO5	Evaluate suitability of given governing mechanisms based on speed control parameter analysis	Evaluate						
CO6	Select and design an appropriate mechanism for given proposed machine	Create						

Description:

The effectiveness of mechanical machines depends upon mechanism used for transmission of motion in different components. Engineer can deal with these machines only if he has fundamental knowledge of mechanisms. Theory of Machine subject is introduced in syllabus to get the students acquainted with mechanism which is used in machine to transmit power from a source to its various parts as well as to transform motion from one form in to another form. It includes kinematics and kinetics of mechanism design of cam and follower, theory of governor etc.

Duomoguigitoge	1:	Applied mechanics	1	5	1	jist. Nomer	Z
Prerequisites:	2:	Basic Mathematics		0	1	(TAT # 0)	S. S. S. S.

3:	Basic Mechanical Engineering

	Section - I							
	Basic Concept of Mechanisms							
Unit 1	Links, kinematic pair (lower and higher), Kinematic chain, Mechanism, inversion, Types of constraints, Grubblers criterion, Inversions of slider crank chain, Double slider crank chain, Four bar, Steering gear mechanisms, Hooke's joint (only theoretical treatment).	05 Hrs						
	Velocity and Acceleration in Mechanisms							
Unit 2	Unit 2 Graphical analysis of Velocity and acceleration for different mechanisms using relative velocity and acceleration method, Klein's construction for slider crank mechanism, Velocity analysis by Instantaneous center method.							
	Friction							
Unit 3	Introduction to friction, Friction in pivot bearings, Inclined plane theory, Friction in screws	05 Hrs						
	Section - II							
	Cams							
Unit 4	Types of cams and followers, Profiles of cams for specified motion of different followers, Spring load on the follower, Jumping of follower.	08 Hrs						
	Belts and Dynamometers	I						
Unit 5	Types of belt drives, Calculation of power transmitted, Belt tension ratio, Actual tension in a running belt, Centrifugal and initial tension in belt, Slip and creep of belt.	06 Hrs						
	Governors							
Unit 6	Types of governors, Porter and Hartnell governor, Controlling force and stability of governor, Hunting, Sensitivity, Isochronisms, Governor effort and power, Insensitiveness of governors.	06 Hrs						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicabl	le
													PSO1	PSO2	PSO3
CO1	3	1		-	1		1								
CO2	3	2	2	1									1		
CO3	2	2	1	2									2		
CO4	2	2	3	1								/	ENZITI	0410	<u></u>
CO5	1	3	1	2								KO.	3 WARANE	NAGAR	2
CO6	1	2	3	3								HEB HEB	Dist. K	oihapur	33.0

References:

Tex	Text Books					
1	"Theory of Machines", Ratan S.S, Tata McGraw Hill New Delhi, 2nd Edition					
2	"Theory of Machines", P.L.Ballany, Khanna Publication, New Delhi, 2nd Edition.					
3	"Theory of Machines", V.P. Singh, DhanpatRai and Sons.					
Ref	Reference Books					
1	"Theory of Machines and Mechanism", Shigley, McGraw Hill, New York					
2	"Theory of Machines", Abdullah Shariff, McGraw Hill, New Delhi.					
3	"Theory of Machines", Thomas Bevan, CBS Publisher					

Web Links/ Video Lectures:

- 1. http://nptel.ac.in/courses/
- 2. http://ocw.mit.edu

ME405- MANUFACTURING PROCESSES AND MACHINE TOOLS

Lectures: 3 hrs. / WeekEvaluation Scheme:Credits: 3ESE: 60 MarksTutorials: NAISE: 40 Marks

Course Objectives: The objective of the course is

- 1. To understand different methods of Molding and Casting.
- 2. To study different types of forming processes
- 3. To learn various plastic shaping processes and welding processes.
- 4. To understand theories of lathe, drilling and boring machine and metal removal rate, shaping, milling and gear manufacturing process & Non conventional Machining.

Course Outcomes:						
COs	At the end of successful completion of the course, the student will be able to:	Bloom's Taxonomy				
CO1	Explain the construction & working of various machine tools used in Manufacturing processes.	Understand				
CO2	Describe various metal casting, metal cutting, metal forming & metal joining processes.	Understand,				
CO3	Discuss various plastic processing and tools includes thermoforming, extrusion etc.	Understand				
CO4	Apply the fundamental theory of machining processes to calculate Machining time and Metal removal rate.	Apply, Analysis				
CO5	Summarize various Gear manufacturing processes and select the appropriate process as per the requirement.	Evaluation				
CO6	Illustrate the principles and applications of Non- traditional machining (NTM) processes	Understand, Apply				

Description:

Manufacturing processes used in industry for converting raw materials into finished products. This course contains basic knowledge of different types of manufacturing process and its advantages, applications. Machining and machine tools is an important subject with application in several industries. Traditional machining is the broad term used to describe removal of material from a work piece. This course has six units namely i) casting process ii) Metal forming process iii) plastic shaping process and welding process iv) metal cutting processes-I v) Metal cutting processes-II and vi)Non Traditional Machining

	1:	Basic Mechanical Engineering	
Prerequisites:	2:	Metallurgy and Material science	INSTITUTE

	Section - I						
	Casting Processes:						
	Importance of casting as manufacturing process, advantages and limitations of casting	00.44					
	processes, foundry layouts and mechanization, Moulding types such as Green sand	09 Hrs					
	moulding, Shell moulding, CO ₂ moulding, investment casting, Components of gating						
Unit 1	system. Introduction to permanent mould casting process such as continuous casting,						
	Gravity die casting, pressure die casting, Melting practices and Metallurgical control in						
	Cupola furnace, Induction and Arc Furnace, casting defects, metal pouring						
	equipment's, Cleaning-fettling and inspection of casting. Numerical Treatment.						
	Forming Processes:	l					
	a) Rolling: Introduction, Hot and cold rolling, Rolling Mill Classification, Defects in rolling.						
Unit 2	b) Forging: Introduction, Forging Machines (board Hammer, Air and Steam, Hydraulic						
Omt 2	Hammer), Open and Closed die Forging, Defects in forging.	07 Hrs					
	c) Extrusion: Introduction, Direct, Indirect, Tube, Impact and Hydraulic Extrusion,						
	Defects in extrusion.						
	Plastic Shaping and welding process						
	a) Thermosetting and thermoplastic materials, their properties and applications,						
Unit 3	Introduction to blow moulding, injection moulding, extrusion, calendaring and						
	thermo forming.	04 Hrs					
	b) Definition of welding ,classification of welding, construction and working of Metal						
	inert gas(MIG), Tungsten inert gas(TIG)						
	Section - II Machine Tools for Metal Cutting I:						
	a) Lathe: Introduction, Working principle, types, specifications, principle parts, accessories, attachments, and various lathe operations.						
	b) Drilling Machines: Classification of drilling machines, Construction and working of						
Unit 4	radial drilling machine, various accessories and various operations and Numerical	09 Hrs					
	Treatment.						
	C) Boring Machines: Introduction to boring machines, Types of boring machine, different						
	operations.	NSTITUT					
	Machine Tools for Metal Cutting II:						
	a)Shaping & Planning Machine: Construction & working of shaper and Planer	NARAN HURG					
Unit 5	machine, Comparison between planer and shaper machine and Numerical Treatment.	Dist. Koihap					
	b) Milling Machine: Types- Horizontal, Vertical milling machines, Milling cutters,	COLL ES					
	construction and working of column and knee type, milling operations, simple and	TAT K					
		i					

	compound indexing.					
	c) Gear Manufacturing processes: Study of various processes like gear shaping, gear					
	hobbing, Gear finishing processes –Gear shaving, Gear burnishing and gear rolling.					
	Nonconventional Machining:					
	Fundamental principle, machining unit, tool material, advantages, limitations and					
Unit 6	applications of Abrasive Jet Machining, Electrical Discharge machining, Electro-	04 Hrs				
	Chemical machining, Laser beam machining, Ultrasonic machining, Water jet machining.					
1						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicable	le
													PSO1	PSO2	PSO3
CO1	2	2		1	2								-1		
CO2	2	2			3										2
CO3	2	2			3										2
CO4	3	2													3
CO5	3	3			2										2
CO6	3	2	1	1	3	1	1				1				2

References:

Text	t Books						
1	"Manufacturing Technology- Foundry, Forming and Welding, Vol. I", P. N. Rao, Tata McGraw-Hill,						
	New Delhi,3rd edition, 2009.						
2	"A Textbook of Production Technology (Manufacturing Processes)", P.C. Sharma, S. Chand and						
	Company Pvt.Ltd, New Delhi.7 th Edition,2010.						
3	"Workshop Technology vol. II", B.S. Raghuvanshi, Dhanapat Rai Publications Pvt.Ltd, New Delhi.10 th Edition, 2000.						
4	"Workshop Technology vol. II", B.S. Raghuvanshi, Dhanapat Rai Publications Pvt.Ltd						
_	Viva Books Pvt.Ltd,NewDelhi,1stEdition,2001.						
5	"Elements of Workshop Technology vol. II", S.K.Hajra Choudhury and A.K. Hajra Choudhury Media U7						
	promoters and Publishers Pvt.Ltd,NewDelhi,13 th Edition,2012.						
6	"Production technology", R. K. Jain, Khanna Publishers, Delhi, 15th Edition, 2000.						

Refe	Reference Books						
1	"Principles of metal casting", Haineand Rosenthal, Tata McGraw-Hill Book, Company. New Delhi.						
2	"Workshop Technology", W.A.J.Chapman, CBS Publishing and Distributors, N.DelhiVol.I [ISBN-13:9788123904016]2001, Vol.II [9788123904115] 2007 and Vol.III [9788123904122] 1995.						
3	"Machine Tools and Manufacturing Technology", Steve F. Krar, Mario Rapisarda, Albert F. Check.						

Web Links/ Video Lectures:

- 1. http://msvs-dei.vlabs.ac.in/
- 2. https://nptel.ac.in/courses/112/107/112107083/
- 3. https://nptel.ac.in/courses/112/107/112107250/

ME401T- COMPUTATIONAL TECHNIQUES AND PROGRAMMING LAB

Evaluation Scheme:

Practicals : 2 hrs. /week ISA : 25 Marks

Credits : 1 POE : NA

Course Objectives: The objective of the course is to

- 1. Develop the logic of the Numerical method for Programming.
- 2. To prepare an algorithm & flowchart for a program for specific method.
- 3. Write computer program in C++/ Python for numerical methods.
- 4. To impart Programming skills to the students.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Bloom's Taxonomy
CO1	Solve a specific problem using an appropriate Numerical method.	Application
CO2	Develop a logic required to prepare a Computer program for Numerical method.	Application
CO3	Prepare an algorithm and Flowchart for a C++ or Python program for a Numerical method.	Application, Synthesis
CO4	Create a program on Numerical method using C++ or Python.	Application, Create

Description:

The course, Computational Techniques and Programming Lab is offered as the Engineering Science course. In Engineering, most of the time the problem involves complex mathematical logic & repetitive and tedious calculations. There is always a limitation to carry out these complex and repetitive calculations manually. It becomes mandatory to have knowledge of computer program in order to deal with this practical situation. This course contains Programming exercises on Numerical Methods to solve various Engineering Problems which has six units namely, i) Roots of Equations ii) Linear Algebraic Equations iii) Curve Fitting & Interpolation iv) Numerical Differentiation & Integration v) Ordinary Differential Equations and vi) Ordinary Differential Equations.

	1:	Basics in Algebra: Roots of equations, Simultaneous equations.	
.	2:	Basics of Matrices and determinants	CTITIES
Prerequisites:	3:	Basic knowledge of derivative and integration	at Maria
	4.	Basic Knowledge of C++ Programming / Python	WARAMANAGA WAIDAD

Practicals:

Number	Practical/Experiment/Tutorial/Topic	Hrs.	Attainment of Cognitive level as per Bloom
	ONE assignment EACH on every Unit containing:		Application
	1. At least ONE problem on all the methods in each unit	2 each	Analysis
1 to 6			Synthesis
	2. Flowchart & a C++/Python program on at least ONE		Create
	method in each unit mentioned in syllabus		

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicabl	le
													PSO1	PSO2	PSO3
CO1	2	3	1	2									2	2	2
CO2	2	3	1	2	2										
CO3	2	3	1	2	2										
CO4	2	2	2	2	3						1	-	2	2	2

References:

Tex	Text books								
1	Dr. P. Kandasamy, Dr. K. Thilagavathy, Dr. K. Gunavathi, Numerical Methods, S. Chand Publications								
2	S. Arumugam, A. Thangapandi Isaac, A. Somasundaram, Numerical Methods, Scitech Publications								
3	E. Balagurusamy, Numerical Methods, McGraw Hill Education								
Ref	Reference Books								
1	Steven Chapra, Applied Numerical Methods with MATLAB for Engineers &Scientists, McGraw Hill								
1	Publication								
2	S. R. Otto, J. P. Denier, An introduction to Programming & Numerical Methods in MATLAB.								
3	Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press								

Link for Video Lectures:

https://nptel.ac.in/courses/111/107/111107105/

https://nptel.ac.in/courses/106/106/106106212/

Link of VLAB for Experiments:

http://vlabs.iitb.ac.in/vlabs-dev/labs/numerical_lab/labs/explist.php

ME402T- ANALYSIS OF MECHANICAL ELEMENTS LAB

Evaluation Scheme:

Practicals : 2 hrs. /week ISA : 25 Marks

Credits : 1 POE : NA

Course Objectives: The objective of the course is to

1. apply the basic concepts related to tensile, compressive and shear stresses in engineering components and evaluate the stress- strain

- 2. Calculate force and bending moment in beams, deflection in beams, buckling in columns using fundamental equations.
- 3. Estimate distribution of bending stresses and shear stresses

Cours	Course Outcomes:								
Cos	At the end of successful completion of the course the student will be able to	Blooms Taxonomy							
CO1	Understand the concept of stresses and strains.	Understand							
CO2	Draw shear force and bending moment diagram under different loading conditions.	Create							
CO3	Determine bending stresses, shear stresses and principle stresses in beams.	Evaluate							
CO4	Evaluate deflection in beams and buckling load in column due to application of different loading.	Evaluate							

Description:

Analysis of Mechanical Elements is a fundamental subject needed primarily for the students of Mechanical sciences. As the engineering design of different components, structures etc. used in practice are done using different kinds of materials, it is essential to understand the basic behavior of such materials. Analysis of Mechanical Elements, also known as mechanics of materials, is focused on analyzing stresses and deflections in materials under load.

	1:	Knowledge of Basic Mechanical Engineering
Prerequisites:	2:	Knowledge of applied mechanics

Practicals: For this course numerical based assignments are offered during practical hours.

Number	Tutorial Topic	Hrs.
1	Assignment on stresses and strains.	2
2	Assignment on torsion (Problems based on industrial applications)shear force diagram & bending moment diagram.	2
3	Assignment on bending stresses and shear stresses in beams.	2
4	Assignment on principal stresses (both analytical and graphical).	2
5	Assignment on deflection of beams.	2
6	Assignment on Column	2

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable			
			104	103	100	107	100	109	1010	1011	1012	PSO1	PSO2	PSO3		
CO1	1	2											1			
CO2	2	3											1			
СОЗ	3	1	1	1									1			
CO4	2	2	2	2									1			

References:

Tex	Text Books						
1	"Strength of Materials", S. Ramamruthum, Dhanpat Rai and Sons, New Delhi.						
2	"Strength of Materials", R. K. Bansal, Laxmi Publication, 4th Edition.						
3	"Strength of Materials", Khurmi Gupta, S. Chand Publication.						
4	"Strength of Materials", R.K. Rajput, S. Chad Publication.						
5	"Mechanics of structure", S.BJunnerkar, Charotar Publication House.						
6	"Strength of Materials", S. S. Bhavikatti, Vikas Publication House.						
7	"Strength of Materials", Timoshenko and Young, CBS Publication.						
8	"Mechanics of Materials", S. S. Ratan, Tata McGraw Hill Publication, 2009.						

Refe	Reference Books						
1	"Strength of Materials", Beer and Johnson, CBS Publication.						
2	"Strength of Materials", G.H. Rider, Mac Millan India Ltd.						
3	"Strength of Materials", Nag and Chanda, Willey India Publication.						
4	"Advanced Mechanics of Materials", Boresi, Willey India Publication.						
5	"Strength of Materials", Den Hartong, McGraw Hill Publication.						
6	"Mechanical analysis and design", H. Burr and John Cheatam, PHI, New Delhi.						

Web Links/ Video Lectures:

- 1. https://nptel.ac.in/courses/112/107/112107146/
- 2.https://nptel.ac.in/courses/112/106/112106141/

ME403T-FLUID AND TURBO MACHINERY LAB

Evaluation Scheme:

Practicals : 2 hrs. /week ISA : 25 Marks

Credits : 1 POE : NA

Course Outo	Course Outcomes:									
COs	$At the end of successful completion of the course, -the student will be able to {\tt the course} and {\tt the course} and {\tt the course} are {\tt the $	Blooms Taxonomy								
CO1	Analyze the performance of hydraulic machines by obtaining work done, power, efficiencies etc.	Analyze								
CO2	Plot performance characteristics curves with their theoretical nature of different hydro machinery	Apply								
CO3	Select turbo machine for specified condition	Apply Evaluate								
CO4	Evaluate performance of reciprocating compressor.	Evaluate								

Practicals: List of Experiments

Number	Name of Experiment	Hrs.	Cognitive levels of attainment as per Bloom's
1	Study of model testing and unit quantities of water turbines & pump	2	Understand
2	Trial on pelton wheel and to plot characteristics curve	2	Apply, Analyze
3	Trial on francis turbine and to plot characteristics curve	2	Apply, Analyze
4	Trial on centrifugal pump and to plot characteristics curve	2	Apply, Analyze
5	Trial on reciprocating compressor	2	Apply, Analyze
6	Selection criteria for different types of pumps (Case Study)	2	Apply, Evaluate
7	Selection criteria for different types of compressor / blower (Case Study)	2	Evaluate Evaluate
8	Industrial visit to pump/turbine manufacturing industry or hydro power plant.	2	Understand WARANANAGAR

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If applicable		
													PSO1	PSO2	PSO3
CO1	1	2	2								-		1	1	
CO2	1	2	2	1									1	2	
CO3	1	1	2	3							1		1	3	
CO4	1	2	2										1	2	

References:

Tex	Text Books								
1	A text book of Fluid Mechanics and Hydraulic Machines by R.K.Bansal, LaxmiPublicaton								
3	Thermal Engineering by R. K. Rajput, Laxmi Publications								

Links of V-Labs:

- 1. https://fmc-nitk.vlabs.ac.in/exp/pelton-turbine/
- 2.https://fmc-nitk.vlabs.ac.in/exp/francis-turbine/
- $\textbf{3.} \ \underline{https://fmc-nitk.vlabs.ac.in/List\%20of\%20experiments.html}$

ME406-PROGRAMMING IN PYTHON LAB

Evaluation Scheme:

Practicals : 2 hrs. /week ISA : 50 Marks

Credits : 1 POE : NA

Course Objectives: The objective of the course is to

1. Introduce to Python Programming Language (free open source) which is world widely used

- 2. Apply the principles of python programming so that students are able to write computer program in Python
- 3. Provide knowledge of user define Functions and Modules in Python

4. Study of classes used in Python.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Bloom's Taxonomy
CO1	State and use different Input/output functions, Standard data types, Strings, basic operators in python programming	Knowledge
CO2	Implement Python programs with conditionals and loops	Understand Application
CO3	Utilize the Python strings and Python list concept in programming	Understand Application
CO4	Develop code for user defined function in python and implement it in simple programs	Application Create

Description:

Computer programming skills are now becoming part of basic education as these skills are increasingly of vital importance for future job and career prospects. The Python programming language which is one of the most popular programming languages worldwide. The course shows you how to use the free open-source Python to write basic programs and high level applications using concepts such as Class, BIF of Python, functions, variables, If Else statements, For loops, While loops, iterative and recursive programs and algorithms such as the Insertion Sort algorithm.

This course will be of great interest to all learners who would like to gain a thorough knowledge and understanding of the basic components of computer programming using the Python language

Prerequisites:	1:	Basics of C and C++ Programming	
Frerequisites:	2:	Knowledge of fundamentals of Computer Software and Hardware	

	Lab Work	
	Introduction to Python Programming Language.	
Unit 1	 Why Python Script or Program, Application of Python Python identifiers and reserved words Lines and indentation, multi-line statements Comments Input/output with print and input functions, Command line arguments and processing command line arguments Standard data types - basic, none, Boolean (true & False), numbers Data type conversion Python basic operators (Arithmetic, comparison, assignment, bitwise logical) Operator precedence 	04 Hrs
	Control Statements and Python loops	I
Unit 2	 Control Statements Python loops Iterating by subsequence index Loop control statements (break, continue, pass) Mathematical functions and constants (import math) Random number functions 	04 Hrs
Unit 3	Python strings	
	 Concept, escape characters String special operations String formatting operator Single quotes, Double quotes, Triple quotes Raw String, Unicode strings, Built-in String methods. Python Lists - concept, creating and accessing elements, Updating & deleting lists, basic list operations, reverse Indexing, slicing and Matrices Built-in List functions 	04 Hrs
	Section-II	
	Python tuples and sets	
Unit 4	 Creating & deleting tuples Accessing values in a tuple Updating tuples, delete tuple elements Basic tuple operations Indexing, slicing and Matrices, built- in tuple functions. 	04 Hrs
	Functions	
Unit 5	 Defining a function (def) Calling a function Function arguments - Pass by value, Keyword Arguments, default arguments Scope of variable - basic rules Documentation Strings 	04 Hrs
	 Variable Number of Arguments Call by Reference Order of arguments (positional, extra & keyword) 	WARANANAGA Dist. Koihapu

KATA

	 Anonymous functions 	
	Recursion	
	 Treatment of Input and Output Arguments 	
	Classes	
	 Defining Classes and Creating objects 	
	 Class method and self argument 	
Unit 6	 Class variables and object variables 	04 Hrs
	 Public and private data members 	04 Hrs
	 Calling a class method from another class method 	
	 Built in functions and class attributes 	

Practicals:

Number	Practical/Experiment/Tutorial Topic	Hrs.	Cognitive levels of attainment as per Bloom
	Minimum Two Python program on each unit		Knowledge
1 to 6	mentioned in syllabus	2 each	Application
			Analysis
			Synthesis
			Create

Mapping of POs & COs:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicabl	e
													PSO1	PSO2	PSO3
CO1	2														
CO2	3	2													
CO3	3	2	1	2											
CO4	2	3	1	2	2								2		

References:

Text l	books
1	Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press
2	Let Us Python: Python Is Future, Yashavant Kanetkar, Aditya Kanetkar, BPB Publication, New Delhi,
3	Introduction to Python Programming, Gowrishankar S, Veena A ·, CRC Press, Taylor and Francs Group, New York, 2018

Link for Video Lectures:

- 1. https://nptel.ac.in/courses/111/107/111107105/
- 2. https://nptel.ac.in/courses/106/106/106106212/

ME404P- THEORY OF MACHINE-I LAB

Evaluation Scheme:

Practicals: 2 hrs. /weekISA: 25 MarksCredits: 1POE: 25 Marks

Course Objectives: The objective of the course is to

1. Provide the students with basic knowledge of mechanism and its application in mechanical engineering through the experiments

- 2. get known the significance of velocity and acceleration diagram in application of mechanism
- 3. Introduce the role of power transmission device (belt drive) in mechanism
- 4. Study the fundamental theory of friction and its analysis in different Mechanisms and machines

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Cognitive levels of attainment as per Bloom's
	Study of basic mechanisms. (Demonstration of models,		
1	Actual mechanisms, etc.)	2	Evaluation
2	One A3 size sheet of Velocity problems by relative velocity	2	Evaluation
	method. (Minimum 4 problems)		
3	One A3 size sheet of Acceleration problems (including Coriolis	2	Evaluation
3	component) by relative acceleration method. (Minimum 4	2	
	problems)		
	One A3 size sheet of Velocity problems by Klien's construction		Evaluation
4	and Instantaneous center method. (Minimum 4 problems)	2	Evaluation
5		2	Evoluation
3	Verification of ratio of angular velocities of shafts connected by	2	Evaluation
	Hooks joint.		A 1 .
6	One A3 size sheet of Problems on cam profile. (Minimum 4	2	Analysis
	problems)		
7	Experiment on Governor characteristics for Porter or Hartnell	2	Analysis
	governor.		7
8	Experiment on Cam Profile	2	Evaluation
9	Experiment on belt drives.	2	Analysis
10	Experiment on Dynamometer	2	Application
	*		

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicab	le
													PSO1	PSO2	PSO3
CO1	3	1	1	1	1	1	1	1	1	1	I	1	1	1	
CO2	3	2	2	1									1		
CO3	2	2	1	2									2		
CO4	2	2	3	1	1	1	1	1	1	1	1	1	2	1	
CO5	1	3	1	2	1	1	1	1	1	1	1	1	3	1	
CO6	1	2	3	3	1	1	1	1	1	-	1	1	3	1	

References:

Tex	Text Books					
1	"Theory of Machines", Ratan S.S, Tata McGraw Hill New Delhi, 2nd Edition					
2	"Theory of Machines", P.L.Ballany, Khanna Publication, New Delhi, 2nd Edition.					
3	"Theory of Machines", V.P. Singh, DhanpatRai and Sons.					
Ref	Reference Books					
1	(5)					
1	"Theory of Machines and Mechanism", Shigley, McGraw Hill, New York					
2	"Theory of Machines and Mechanism", Shigley, McGraw Hill, New York "Theory of Machines", Abdullah Shariff, McGraw Hill, New Delhi.					

Web Links/ Video Lectures:

- 1. http://nptel.ac.in/courses/
- 2. http://ocw.mit.edu

ME407P- MANUFACTURING SKILL DEVELOPMENT LAB- II

Evaluation Scheme:

Practicals: 2 hrs. /weekISA: 25 MarksCredits: 1POE: 50 Marks

Course Objectives: The objectives of the course is to

- 1. To study Machine layout, installation of Machine Tools, selection of Tools.
- 2. To study Lathe Machine, Drilling Machine, Milling Machine.
- 3. To study and perform the various machining operations.
- 4. To Implement principles of metrology.

Course Outcomes:

Cos	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Understand Machine layout, method of Machine Tool installation, selection of Tools for various machining operation.	Understand
CO2	Selection of Machine tools such as Lathe Machine, Drilling Machine and Milling Machine for specific component operations	Analysis
CO3	Perform various machining operations to prepare Job using plain turning, taper turning, external threading, knurling, slotting, Keyway and Tapping etc.	Application Create
CO4	Apply quality inspection techniques on a component using principles of metrology.	Application

Description:

To get the hands on experience on Machine tools used in industries, Manufacturing Skill Development Lab-II course is designed. It contains basic knowledge and different operations on lathe machine, drilling machine, milling machine, shaping and drilling machine. The major focus is given on actual manufacturing of mechanical components as per provided drawing using these machine tools.

Duono antaitas.	1:	Engineering Graphics, Basic Mechanical Engineering.
Prerequisites:	2:	Composition of materials.

Practicals:

Number	Practical/ Experiment/Tutorial Topic	Hrs.	Cognitive levels of attainment as per Bloom's
1	Machine layout, existing machine specifications, Installation procedure of Machine Tools	2	Understand
2	Study the Mechanism and Application of Lathe Machine, Drilling Machine, Milling Machine.	2	Knowledge
3	Study the Mechanism and Application of Shaping, Slotting, Grinding, Tapping, Die threading.	2	Understand
4	Performing operations on job of MS material having facing, countering, parting, plain turning, taper turning, threading knurling etc.	2	Knowledge, Application
5	Performing operations on job of MS material having facing, countering, parting, plain turning, taper turning, threading knurling etc.	2	Knowledge, Application
6	Performing operations on job of MS material having facing, countering, parting, plain turning, taper turning, threading knurling etc.	2	Knowledge, Application
7	Performing one job of MS material on milling machine includes slotting / keyways.	2	Knowledge, Application
8	Performing one job of MS material on milling machine includes slotting / keyways.	2	Knowledge, Application
9	Performing one job of MS material on shaping machine.	2	Knowledge, Application
10	Performing operations on one job of MS material on grinding machine.	2	Knowledge, Application
11	Operations to be performed which includes tapping, die threading, boring.	2	Knowledge, Application
12	To carry out assembly of all components.	2	Application
13	Apply inspection techniques of Metrology	2	Analysis

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	If	applicabl	e
													PSO1	PSO2	PSO3
CO1	2	3	1	2											
CO2	2	3	1	2	2										
CO3	2	3	1	2	2							1	2	2	2
CO4	2	2	2	2	3						4		2	2	2

References:

Tex	t Books						
1	"Workshop Technology Vol. II", Raghuvanshi						
2	"Workshop Technology Vol. II", Hajara Choudhary, Media Promoters and Publishers, Mumbai						
3	"Workshop Technology Vol. I", Hajara Choudhary						
Refe	erence Books						
1	"Production Technology", P. C. Sharma, S. Chand Publication ,11th Edition.						
2	"Production Technology", HMT handbook						
3	"Workshop Practice Manual", V. Venkata Reddy, 6th edition						

ME408P - COMPUTER AIDED DRAFTING

Evaluation Scheme:

Practicals: 2 hrs. /weekISA: 25 MarksCredits: 1POE: 25 Marks

Course Objectives : The objectives of the course is to

- 1. To understand importance of CAD tool.
- 2. To develop an ability to create 2-D drawings.
- 3. To create 3-D models of machine components.
- 4. To create assembly of simple machine components with industrial approach.

Course Outcomes:

COs	At the end of successful completion of the course the student will be able to	Blooms Taxonomy
CO1	Draw 2D drawings and 3D models of simple components.	Application
CO2	Analyze and interpret production Drawing	Analysis
CO3	Use modern engineering techniques, tools and skills for engineering practice.	Analysis
CO4	Develop the skills for drafting using CAD software and get the knowledge to enhance the CAD utilities.	Knowledge, Analysis

Description:

This course has six units namely i) Introduction to CAD, ii) Use of layers, iii) Geometric Dimensioning and Tolerance, iv) Detail and Assembly Drawings, v) Production Drawing, vi) Introduction to 3D.

Dwawaguigitage	1.	Fundamentals of Engineering Graphics.
Prerequisites:	2.	Fundamentals of Machine Drawing and Engineering Drawing.

	Introduction to CAD								
Unit 1	Limits command, Units command, DRAW commands like, Point (Format, Divide & Measure), Lines, Polyline, Circle, Ellipse, Polygon, Rectangle and Block. MODIFY commands like, Erase, Move, Copy, Array, Scale, Lengthen, Fillet, Chamfer, Explode, Mirror, Offset, Trim, Extend, and Break. Viewing commands like Zoom, Pan, 3D Orbit. Auxiliary commands: INQUIRY Toolbar (Distance, Area and Mass), OSNAP& its settings, ORTHO, OTRACK TEXT Commands: Text, Multiline Text, Setting Text Styles.	10 Hrs							
TI '' 0	Use of Layers								
Unit 2	Use of LAYERS in 2D drawing, Annotation and Layers toolbars.	02 Hrs							
	Geometric Dimensioning and Tolerance								
Unit 3	Geometric Dimensioning Types of Dimensions: Linear, Aligned, Radius, Diameter, Angle Styles of Dimensioning: Baseline, Continue, Setting Dimension Styles (Setting the Method of Tolerances). Tolerancing For 2-D Objects: Applying various tolerance symbols like Straightness, Flatness, Perpendicularity, Angularity, Roundness, Concentricity, Cylindricity, Run out, Profile, Parallelism etc. Entering limits, fits, tolerances surface finish symbols and Machining Symbols on drawings.								
	Details and Assembly Drawings								
Unit 4	Preparing detail and assembly drawings in 2D. Preparing Bill of Material (BOM). Maximum number of parts to be limited. Entering limits, fits, Tolerances and surface finish symbols on detail and assembly drawings.	02 Hrs							
Unit 5	Production Drawing								
Omt 3	Production drawing including removed cross section, detailedviews, Cross sectional views, dimensions and tolerances etc.								
	Introduction to 3D								
Unit 6									

Practicals:

Sr. No.	Practical/Experiment/Tutorial Topic	Hrs	Cognitive levels of attainment As per Bloom' s
1	List out 2D and 3D commands shortcut keys.	4	Knowledge
2	Computer aided drafting of two simple components and print out of the same on A4 size sheet.	6	Application
3	3-D drawing of two or three simple components and plotting its 2-D views along with 3-D object drawing. Print out of the same on A4 size sheet.	6	Application
4	Drawing details and assembly with limit, fit, tolerances& Bill of material of assembly containing 6-8 major components .Print out of the same on A3 size sheet.	8	Application

Mapping of POs & COs:

	DO1	DOG	DO2	DO 4	DO5	DOC	DO7	DOG	DOO	DO10	PO11	DO12	If applicable			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		PO12	PSO1	PSO2	PSO3	
CO1	1		2	1	2	1	1	I		2	-		2	1		
CO2		3	-1	1	-1	1	-1	-1	-1		-1					
CO3			-	1	3	1	1	1	1							
CO4			-1	1	-1	1	-1	-1				1				

References:

Tex	at Books
1	Ajeet Sing, "Working with AutoCAD 2000", Tata McGraw Hill.
2	"Machine drawing", N.D. Bhat and V.M. Panchal, Charotar Publication House, Anand,42 nd Edition, 2007.
3	"Machine drawing", Basudeb Bhattacharyya, Oxford university press.
Ref	erence Books
1	"Auto cad 2014 for Engineers and Designers", Sham Tickoo, Dreamtech press, NewDelhi, 2014.
2	"Auto Cad 2014", Ellen Finkelsten, Wiley India Manuals and Tutorials of referredsoftware".

Note: Latest drafting software like Auto cad and any advance 3-D modeling software are tobe used.

ME409A - AUDIT COURSE-IV [GENERAL PROFICIENCY]

Practicals: 2 hrs / week Credits: Non-Credit

Examination Scheme: -Audit Point: 2

Instruction for Audit Course:

Student has to undergo any one general proficiency course mentioned below. This course must have minimum Two weeks duration. Student can do this course from the training institutes which are recommended and suggested by the department for respective academic year. At the end of semester, student has to submit the COURSE COMPLETION CERTIFICATE to the department.

Languages

- 1) English Speaking Course
- 2) German Language Course
- 3) Japanese Language Course (Any one Online / Offline Course Certificate course of two weeks)

APPROVED BY

Member Secretary Board of Studies

Chairman
Board of Studies

loard of Studies

MECHANICAL ENGG. DEP

& Technology (Autonomous) Warananagar, Dist. Kolhapur

Academic Dean T.K.I.E.T., Warananagar Principal

T.K.I.E.T., Warananagar Chairman

Academic Council

*atyasaheb Kore Institute of Engg.

& Technology (Autonomous)

Warananagar, Dist. Kolhapur

一里 Dist Norman

WARANANAGA

Seal of Institute